925 resultados para Tetratricopeptide Repeat Domain
Resumo:
We present a case of autoimmune lymphoproliferative syndrome (ALPS) caused by a previously undescribed minimal deletion in the death domain of the FAS gene. ALPS is an uncommon disease associated with an impaired Fas-mediated apoptosis. The patient presented with a history of splenomegaly since 4 months of age, associated with cervical lymphadenopathy, which improved with oral corticosteroid treatment. Relevant laboratory findings were the presence of anemia, thrombocytopenia, and positive direct and indirect Coombs tests. He was not an offspring of consanguineous parents. Two cervical lymph node biopsies were performed, at 4 years and at 6 years of age. In both lymph nodes, there was marked paracortical expansion by lymphocytes in variable stages of immunoblastic transformation and a very high cell proliferating index. Some clear cells were also present, raising the suspicion of malignant lymphoma. In one of the lymph nodes, there was also a focus rich in large histiocytes with round nuclei and emperipolesis, consistent with focal Rosai-Dorfman disease. Immunostaining showed numerous CD3+ cells, many of which were double-negative (CD4- CD8-) and expressed CD57, especially around the follicles. Molecular studies of the lymph node biopsy showed a point deletion (4-base pair deletion) in exon 9 of the FAS gene (930del TGCT), which results in 3 missense amino acids. (c) 2008 Elsevier Inc. All rights reserved.
Resumo:
In this paper, methods are presented for automatic detection of the nipple and the pectoral muscle edge in mammograms via image processing in the Radon domain. Radon-domain information was used for the detection of straight-line candidates with high gradient. The longest straight-line candidate was used to identify the pectoral muscle edge. The nipple was detected as the convergence point of breast tissue components, indicated by the largest response in the Radon domain. Percentages of false-positive (FP) and false-negative (FN) areas were determined by comparing the areas of the pectoral muscle regions delimited manually by a radiologist and by the proposed method applied to 540 mediolateral-oblique (MLO) mammographic images. The average FP and FN were 8.99% and 9.13%, respectively. In the detection of the nipple, an average error of 7.4 mm was obtained with reference to the nipple as identified by a radiologist on 1,080 mammographic images (540 MLO and 540 craniocaudal views).
Resumo:
The genus Schistosoma is composed of blood flukes that infect vertebrates, from which three species are major causative agents of human schistosomiasis, a tropical disease that affects more than 200 million people. Current models of the recent evolution of Schistosoma indicate multiple events of migration and speciation from an Asian ancestral species. Transposable elements are important drivers of genome evolution and have been hypothesised to have an important role in speciation. In this work, we describe a comprehensive inventory of Schistosoma mansoni and Schistosoma japonicum retrotransposons, based on their recently published genomic data. We find a considerable difference in retrotransposon representation between the two species (22% and 13%, respectively). A large part of this difference can be attributed to higher representation of two previously described families of S. mansoni retrotransposons (SR2 and Perere-3/SR3), compared with the representation of their closest relative families in S. japonicum. A more detailed analysis suggests that these two S. mansoni families were the subject of recent bursts of transposition that were not paralleled by their S. japonicum counterparts. We hypothesise that these bursts could be a consequence of the evolutionary pressure resulting from migration of Schistosoma from Asia to Africa and their establishment in this new environment, helping both speciation and adaptation. (C) 2009 Australian Society for Parasitology Inc. Published by Elsevier Ltd. All rights reserved.
Resumo:
An effective innate immune recognition of the intracellular protozoan parasite Trypanosoma cruzi is critical for host resistance against Chagas disease, a severe and chronic illness that affects millions of people in Latin America. In this study, we evaluated the participation of nucleotide-binding oligomerization domain (Nod)like receptor proteins in host response to T cruzi infection and found that Nod1-dependent, but not Nod2-dependent, responses are required for host resistance against infection. Bone marrow-derived macrophages from Nod1(-/-) mice showed an impaired induction of NF-kappa B-dependent products in response to infection and failed to restrict T cruzi infection in presence of IFN-gamma. Despite normal cytokine production in the sera, Nod1(-/-) mice were highly susceptible to T cruzi infection, in a similar manner to MyD88(-/-) and NO synthase 2(-/-) mice. These studies indicate that Nod1-dependent responses account for host resistance against T cruzi infection by mechanisms independent of cytokine production. The Journal of Immunology, 2010, 184: 1148-1152.
Resumo:
LipL32 is the major leptospiral outer membrane lipoprotein expressed during infection and is the immunodominant antigen recognized during the humoral immune response to leptospirosis in humans. In this study, we investigated novel aspects of LipL32. In order to define the immunodominant domains(s) of the molecule, subfragments corresponding to the N-terminal, intermediate, and C-terminal portions of the UpL32 gene were cloned and the proteins were expressed and purified by metal affinity chromatography. Our immunoblot results indicate that the C-terminal and intermediate domains of LipL32 are recognized by sera of patients with laboratory-confirmed leptospirosis. An immunoglobulin M response was detected exclusively against the LipL32 C-terminal fragment in both the acute and convalescent phases of illness. We also evaluated the capacity of LipL32 to interact with extracellular matrix (ECM) components. Dose-dependent, specific binding of LipL32 to collagen type IV and plasma fibronectin was observed, and the binding capacity could be attributed to the C-terminal portion of this molecule. Both heparin and gelatin could inhibit LipL32 binding to fibronectin in a concentration-dependent manner, indicating that the 30-kDa heparin-binding and 45-kDa gelatin-binding domains of fibronectin are involved in this interaction. Taken together, our results provide evidence that the LipL32 C terminus is recognized early in the course of infection and is the domain responsible for mediating interaction with ECM proteins.
Resumo:
It was hypothesized the lower fertility of repeat-breeder (RB) Holstein cows is associated with oocyte quality and this negative effect is enhanced during summer heat stress (HS). During the summer and the winter, heifers (H; n = 36 and 34, respectively), peak-lactation (PL; n = 37 and 32, respectively), and RB (n = 36 and 31, respectively) Holstein cows were subjected to ovum retrieval to assess oocyte recovery, in vitro embryonic developmental rates, and blastocyst quality [terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL)-positive cells and total cell number]. The environmental temperature and humidity, respiration rate, and cutaneous and rectal temperatures were recorded in both seasons. The summer HS increased the respiration rate and the rectal temperature of PL and RB cows, and increased the cutaneous temperature and lowered the in vitro embryo production of Holstein cows and heifers. Although cleavage rate was similar among groups [H = 51.7% +/- 4.5 (n = 375), PL = 37.9% +/- 5.1 (n = 390), RB = 41.9% +/- 4.5 (n = 666)], blastocyst rate was compromised by HS, especially in RB cows [H = 30.3% +/- 4.8 (n = 244) vs. 23.3% +/- 6.4 (n = 150), PL = 22.0% +/- 4.7 (n = 191) vs. 14.6% +/- 7.6 (n = 103), RB = 22.5% +/- 5.4 (n = 413) vs. 7.9% +/- 4.3 (n = 177)]. Moreover, the fragmentation rate of RB blastocysts was enhanced during the summer, compared with winter [4.9% +/- 0.7 (n = 14) vs. 2.2% +/- 0.2 (n = 78)] and other groups [H = 2.5% +/- 0.7 (n = 13), and PL = 2.7% +/- 0.6 (n = 14)] suggesting that the association of RB fertility problems and summer HS may potentially impair oocyte quality. Our findings provide evidence of a greater sensitivity of RB oocytes to summer HS.
Resumo:
Acetohydroxyacid synthase (EC 4.1.3.18; AHAS) catalyzes the initial step in the formation of the branched-chain amino acids. The enzyme from most bacteria is composed of a catalytic subunit, and a smaller regulatory subunit that is required for full activity and for sensitivity to feedback regulation by valine. A similar arrangement was demonstrated recently for yeast AHAS, and a putative regulatory subunit of tobacco AHAS has also been reported. In this latter case, the enzyme reconstituted from its purified subunits remained insensitive to feedback inhibition, unlike the enzyme extracted from native plant sources. Here we have cloned, expressed in Escherichia coil, and purified the AHAS regulatory subunit of Ambidopsis thaliana. Combining the protein with the purified A. thaliana catalytic subunit results in an activity stimulation that is sensitive to inhibition by valine, leucine, and isoleucine. Moreover, there is a strong synergy between the effects of leucine and valine, which closely mimics the properties of the native enzyme. The regulatory subunit contains a sequence repeat of approximately 180 residues, and we suggest that one repeat binds leucine while the second binds valine or isoleucine. This proposal is supported by reconstitution studies of the individual repeats, which were also cloned, expressed, and purified. The structure and properties of the regulatory subunit are reminiscent of the regulatory domain of threonine deaminase (EC 4.2.1.16), and it is suggested that the two proteins are evolutionarily related.
Resumo:
In this study, we have compared the effector functions and fate of a number of human CTL clones in vitro or ex vivo following contact with variant peptides presented either on the cell surface or in a soluble multimeric format. In the presence of CD8 coreceptor binding, there is a good correlation between TCR signaling, killing of the targets, and Fast-mediated CTL apoptosis. Blocking CD8 binding using (alpha3 domain mutants of MHC class I results in much reduced signaling and reduced killing of the targets. Surprisingly, however, Fast expression is induced to a similar degree on these CTLs, and apoptosis of CTL is unaffected. The ability to divorce these events may allow the deletion of antigen-specific and pathological CTL populations without the deleterious effects induced by full CTL activation.
Resumo:
We compare the performance of two different low-storage filter diagonalisation (LSFD) strategies in the calculation of complex resonance energies of the HO2, radical. The first is carried out within a complex-symmetric Lanczos subspace representation [H. Zhang, S.C. Smith, Phys. Chem. Chem. Phys. 3 (2001) 2281]. The second involves harmonic inversion of a real autocorrelation function obtained via a damped Chebychev recursion [V.A. Mandelshtam, H.S. Taylor, J. Chem. Phys. 107 (1997) 6756]. We find that while the Chebychev approach has the advantage of utilizing real algebra in the time-consuming process of generating the vector recursion, the Lanczos, method (using complex vectors) requires fewer iterations, especially for low-energy part of the spectrum. The overall efficiency in calculating resonances for these two methods is comparable for this challenging system. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
Sequences from the tuf gene coding for the elongation factor EF-Tu were amplified and sequenced from the genomic DNA of Pirellula marina and Isosphaera pallida, two species of bacteria within the order Planctomycetales. A near-complete (1140-bp) sequence was obtained from Pi. marina and a partial (759-bp) sequence was obtained for I. pallida. Alignment of the deduced Pi. marina EF-Tu amino acid sequence against reference sequences demonstrated the presence of a unique Il-amino acid sequence motif not present in any other division of the domain Bacteria. Pi. marina shared the highest percentage amino acid sequence identity with I. pallida but showed only a low percentage identity with other members of the domain Bacteria. This is consistent with the concept of the planctomycetes as a unique division of the Bacteria. Neither primary sequence comparison of EF-Tu nor phylogenetic analysis supports any close relationship between planctomycetes and the chlamydiae, which has previously been postulated on the basis of 16S rRNA. Phylogenetic analysis of aligned EF-Tu amino acid sequences performed using distance, maximum-parsimony, and maximum likelihood approaches yielded contradictory results with respect to the position of planctomycetes relative to other bacteria, It is hypothesized that long-branch attraction effects due to unequal evolutionary rates and mutational saturation effects may account for some of the contradictions.