913 resultados para Telomeric sequence
Resumo:
BACKGROUND: The availability of the P. falciparum genome has led to novel ways to identify potential vaccine candidates. A new approach for antigen discovery based on the bioinformatic selection of heptad repeat motifs corresponding to alpha-helical coiled coil structures yielded promising results. To elucidate the question about the relationship between the coiled coil motifs and their sequence conservation, we have assessed the extent of polymorphism in putative alpha-helical coiled coil domains in culture strains, in natural populations and in the single nucleotide polymorphism data available at PlasmoDB. METHODOLOGY/PRINCIPAL FINDINGS: 14 alpha-helical coiled coil domains were selected based on preclinical experimental evaluation. They were tested by PCR amplification and sequencing of different P. falciparum culture strains and field isolates. We found that only 3 out of 14 alpha-helical coiled coils showed point mutations and/or length polymorphisms. Based on promising immunological results 5 of these peptides were selected for further analysis. Direct sequencing of field samples from Papua New Guinea and Tanzania showed that 3 out of these 5 peptides were completely conserved. An in silico analysis of polymorphism was performed for all 166 putative alpha-helical coiled coil domains originally identified in the P. falciparum genome. We found that 82% (137/166) of these peptides were conserved, and for one peptide only the detected SNPs decreased substantially the probability score for alpha-helical coiled coil formation. More SNPs were found in arrays of almost perfect tandem repeats. In summary, the coiled coil structure prediction was rarely modified by SNPs. The analysis revealed a number of peptides with strictly conserved alpha-helical coiled coil motifs. CONCLUSION/SIGNIFICANCE: We conclude that the selection of alpha-helical coiled coil structural motifs is a valuable approach to identify potential vaccine targets showing a high degree of conservation.
Resumo:
Previous studies of subtelomeric regions in Plasmodium berghei led to the identification of subtelomeric repeats (2.3kb long) present in a variable number at many chromosomal ends. Both loss and increase in 2.3kb-repeat copy number are involved in chromosome-size polymorphisms. Subtelomeric losses leading to chromosome-size polymorphisms have been described by several authors in P.falciparum where the structure of subtelomeric regions is not known in detail. We therefore undertook their characterisation, by means of chromosome walking and jumping techniques, starting from the telomere-flanking sequence present in pPftel.1, the P.falciparum telomeric clone described by Vernick and McCutchan (1988). The results indicate that at least 20 (out of 28) chromosomal ends in P.falciparum 3D7 chromosomes share a subtelomeric region, about 40kb long, covering (but not limited to) the Rep20 region. Non repetitive, AT-rich portions flanking the Rep20 region on both sides are also conserved at most chromosomal ends.
Update of the Gene Discovery Program in Schistosoma mansoni with the Expressed Sequence Tag Approach
Resumo:
Continuing the Schistosoma mansoni Genome Project 363 new templates were sequenced generating 205 more ESTs corresponding to 91 genes. Seventy four of these genes (81%) had not previously been described in S. mansoni. Among the newly discovered genes there are several of significant biological interest such as synaptophysin, NIFs-like and rho-GDP dissociation inhibitor
Resumo:
The detection of latent fingermarks on thermal papers proves to be particularly challenging because the application of conventional detection techniques may turn the sample dark grey or black, thus preventing the observation of fingermarks. Various approaches aiming at avoiding or solving this problem have been suggested. However, in view of the many propositions available in the literature, it gets difficult to choose the most advantageous method and to decide which processing sequence should be followed when dealing with a thermal paper. In this study, 19 detection techniques adapted to the processing of thermal papers were assessed individually and then were compared to each other. An updated processing sequence, assessed through a pseudo-operational test, is suggested.
Resumo:
Telomeric TG-rich repeats and their associated proteins protect the termini of eukaryotic chromosomes from end-to-end fusions. Associated with the cap structure at yeast telomeres is a subtelomeric domain of heterochromatin, containing the silent information regulator (SIR) complex. The Ku70/80 heterodimer (yKu) is associated both with the chromosome end and with subtelomeric chromatin. Surprisingly, both yKu and the chromatin-associated Rap1 and SIR proteins are released from telomeres in a RAD9-dependent response to DNA damage. yKu is recruited rapidly to double-strand cuts, while low levels of SIR proteins are detected near cleavage sites at later time points. Consistently, yKu- or SIR-deficient strains are hypersensitive to DNA-damaging agents. The release of yKu from telomeric chromatin may allow efficient scanning of the genome for DNA strand breaks.
Resumo:
The numbat has been reduced to two populations in Western Australia. To better understand the effects of range reduction on gene flow and genetic variation, and to address questions crucial for the species' management, we analysed mitochondrial DNA (mtDNA) sequences of free-ranging individuals and museum specimens. The results suggest recent connectivity between the remnant populations, although one of those may have lost significant amounts of genetic diversity during the recent population size reduction. We propose that for management purposes the remnant populations should be treated as a single historical lineage and that, subject to certain caveats, consideration should be given to population augmentation by translocation.
Resumo:
The genetic diversity of three temperate fruit tree phytoplasmas ‘Candidatus Phytoplasma prunorum’, ‘Ca. P. mali’ and ‘Ca. P. pyri’ has been established by multilocus sequence analysis. Among the four genetic loci used, the genes imp and aceF distinguished 30 and 24 genotypes, respectively, and showed the highest variability. Percentage of substitution for imp ranged from 50 to 68% according to species. Percentage of substitution varied between 9 and 12% for aceF, whereas it was between 5 and 6% for pnp and secY. In the case of ‘Ca P. prunorum’ the three most prevalent aceF genotypes were detected in both plants and insect vectors, confirming that the prevalent isolates are propagated by insects. The four isolates known to be hypo-virulent had the same aceF sequence, indicating a possible monophyletic origin. Haplotype network reconstructed by eBURST revealed that among the 34 haplotypes of ‘Ca. P. prunorum’, the four hypo-virulent isolates also grouped together in the same clade. Genotyping of some Spanish and Azerbaijanese ‘Ca. P. pyri’ isolates showed that they shared some alleles with ‘Ca. P. prunorum’, supporting for the first time to our knowledge, the existence of inter-species recombination between these two species.
Resumo:
Integration of kDNA sequences within the genome of the host cell shown by PCR amplification with primers to the conserved Trypanosoma cruzi kDNA minicircle sequence was confirmed by Southern hybridization with specific probes. The cells containing the integrated kDNA sequences were then perpetuated as transfected macrophage subclonal lines. The kDNA transfected macrophages expressed membrane antigens that were recognized by antibodies in a panel of sera from ten patients with chronic Chagas disease. These antigens barely expressed in the membrane of uninfected, control macrophage clonal lines were recognized neither by factors in the control, non-chagasic subjects nor in the chagasic sera. This finding suggests the presence of an autoimmune antibody in the chagasic sera that recognizes auto-antigens in the membrane of T. cruzi kDNA transfected macrophage subclonal lines.
Resumo:
Molecular studies of insect disease vectors are of paramount importance for understanding parasite-vector relationship. Advances in this area have led to important findings regarding changes in vectors' physiology upon blood feeding and parasite infection. Mechanisms for interfering with the vectorial capacity of insects responsible for the transmission of diseases such as malaria, Chagas disease and dengue fever are being devised with the ultimate goal of developing transgenic insects. A primary necessity for this goal is information on gene expression and control in the target insect. Our group is investigating molecular aspects of the interaction between Leishmania parasites and Lutzomyia sand flies. As an initial step in our studies we have used random sequencing of cDNA clones from two expression libraries made from head/thorax and abdomen of sugar fed L. longipalpis for the identification of expressed sequence tags (EST). We applied differential display reverse transcriptase-PCR and randomly amplified polymorphic DNA-PCR to characterize differentially expressed mRNA from sugar and blood fed insects, and, in one case, from a L. (V.) braziliensis-infected L. longipalpis. We identified 37 cDNAs that have shown homology to known sequences from GeneBank. Of these, 32 cDNAs code for constitutive proteins such as zinc finger protein, glutamine synthetase, G binding protein, ubiquitin conjugating enzyme. Three are putative differentially expressed cDNAs from blood fed and Leishmania-infected midgut, a chitinase, a V-ATPase and a MAP kinase. Finally, two sequences are homologous to Drosophila melanogaster gene products recently discovered through the Drosophila genome initiative.
Resumo:
Biomphalaria glabrata, B. tenagophila and B. straminea are intermediate hosts of Schistosoma mansoni, in Brazil. The latter is of epidemiological importance in the northwest of Brazil and, due to morphological similarities, has been grouped with B. intermedia and B. kuhniana in a complex named B. straminea. In the current work, we have standardized the simple sequence repeat anchored polymerase chain reaction (SSR-PCR) technique, using the primers (CA)8RY and K7, to study the genetic variability of these species. The similarity level was calculated using the Dice coefficient and genetic distance using the Nei and Li coefficient. The trees were obtained by the UPGMA and neighbor-joining methods. We have observed that the most related individuals belong to the same species and locality and that individuals from different localities, but of the same species, present clear heterogeneity. The trees generated using both methods showed similar topologies. The SSR-PCR technique was shown to be very efficient in intrapopulational and intraspecific studies of the B. straminea complex snails.
Design of a Control Slide for Cyanoacrylate Polymerization : Application to the CA-Bluestar Sequence
Resumo:
Casework expercience has shown that, in some cases, long exposures of surfaces subjected to cyanoacrylate (CA) fuming had detrimental effects on the subsequent application of Bluestar. This study aimed to develop a control mechanism to monitor the amount of CA deposited prior to the subsequent treatment. A control slide bearing spots of sodium hydroxide (NaOH) of known concentrations and volume was designed and validated against both scanning electron microscopy (SEM) observations and latent print examiners' assessments of the quality of the developed marks. The control slide allows one to define three levels of development that were used to monitor the Bluestar reaction on depleting footwear marks left in diluted blood. The appropriate conditions for a successful application of both CA and Bluestar were determined.