796 resultados para Tear film
Resumo:
Until this day, the most efficient Cu(In,Ga)Se2 thin film solar cells have been prepared using a rather complex growth process often referred to as three-stage or multistage. This family of processes is mainly characterized by a first step deposited with only In, Ga and Se flux to form a first layer. Cu is added in a second step until the film becomes slightly Cu-rich, where-after the film is converted to its final Cu-poor composition by a third stage, again with no or very little addition of Cu. In this paper, a comparison between solar cells prepared with the three-stage process and a one-stage/in-line process with the same composition, thickness, and solar cell stack is made. The one-stage process is easier to be used in an industrial scale and do not have Cu-rich transitions. The samples were analyzed using glow discharge optical emission spectroscopy, scanning electron microscopy, X-ray diffraction, current–voltage-temperature, capacitance-voltage, external quantum efficiency, transmission/reflection, and photoluminescence. It was concluded that in spite of differences in the texturing, morphology and Ga gradient, the electrical performance of the two types of samples is quite similar as demonstrated by the similar J–V behavior, quantum spectral response, and the estimated recombination losses.
Resumo:
Dissertação para obtenção do Grau de Mestre em Engenharia Biomédica
Resumo:
The correct interpretation of chest film on cardiac patients is very important. The most important feature is the radiographic appearance of the pulmonary vascularity. Four different patterns of pulmonary vascularity are considered: normal, decreased, increased and uneven. The different diseases associated with each type are mentioned. From the pulmonary vascular pattern one can deduct hemodynamic data which are important for the diagnosis, grade of severity and follow-up.
Resumo:
Dissertação para obtenção do Grau de Doutor em Nanotecnologia e Nanociência
Resumo:
Printed electronics represent an alternative solution for the manufacturing of low-temperature and large area flexible electronics. The use of inkjet printing is showing major advantages when compared to other established printing technologies such as, gravure, screen or offset printing, allowing the reduction of manufacturing costs due to its efficient material usage and the direct-writing approach without requirement of any masks. However, several technological restrictions for printed electronics can hinder its application potential, e.g. the device stability under atmospheric or even more stringent conditions. Here, we study the influence of specific mechanical, chemical, and temperature treatments usually appearing in manufacturing processes for textiles on the electrical performance of all-inkjet-printed organic thin-film transistors (OTFTs). Therefore, OTFTs where manufactured with silver electrodes, a UV curable dielectric, and 6,13-bis(triisopropylsilylethynyl) pentance (TIPS-pentacene) as the active semiconductor layer. All the layers were deposited using inkjet printing. After electrical characterization of the printed OTFTs, a simple encapsulation method was applied followed by the degradation study allowing a comparison of the electrical performance of treated and not treated OTFTs. Industrial calendering, dyeing, washing and stentering were selected as typical textile processes and treatment methods for the printed OTFTs. It is shown that the all-inkjet-printed OTFTs fabricated in this work are functional after their submission to the textiles processes but with degradation in the electrical performance, exhibiting higher degradation in the OTFTs with shorter channel lengths (L=10 μm).
Resumo:
Dissertação de mestrado integrado em Engenharia de Materiais
Resumo:
Ti-Me binary intermetallic thin films based on a titanium matrix doped with increasing amounts of Me (Me = Al, Cu) were prepared by magnetron sputtering (under similar conditions), aiming their application in biomedical sensing devices. The differences observed on the composition and on the micro(structural) features of the films, attributed to changes in the discharge characteristics, were correlated with the electrical properties of the intermetallic systems (Ti-Al and Ti-Cu). For the same Me exposed areas placed on the Ti target (ranging from 0.25 cm2 to 20 cm2) the Cu content increased from 3.5 at.% to 71.7 at.% in the Ti-Cu system and the Al content, in Ti-Al films, ranged from 11 to 45 at.%. The structural characterization evidenced the formation of metastable Ti-Me intermetallic phases for Al/Ti atomic ratios above 0.20 and for Cu/Ti ratios above 0.25. For lower Me concentrations, the effect of the α-Ti(Me) structure domains the overall structure. With the increase amount of the Me into Ti structure a clear trend for amorphization was observed. For both systems it was observed a significant decrease of the electrical resistivity with increasing Me/Ti atomic ratios (higher than 0.5 for Al/Ti atomic ratio and higher than 1.3 for Cu/Ti atomic ratio). Although similar trends were observed in the resistivity evolution for both systems, the Ti-Cu films presented lower resistivity values in comparison to Ti-Al system.
Resumo:
This paper reports on an innovative approach to measuring intraluminal pressure in the upper gastrointestinal (GI) tract, especially monitoring GI motility and peristaltic movements. The proposed approach relies on thin-film aluminum strain gauges deposited on top of a Kapton membrane, which in turn lies on top of an SU-8 diaphragm-like structure. This structure enables the Kapton membrane to bend when pressure is applied, thereby affecting the strain gauges and effectively changing their electrical resistance. The sensor, with an area of 3.4 mm2, is fabricated using photolithography and standard microfabrication techniques (wet etching). It features a linear response (R2 = 0.9987) and an overall sensitivity of 2.6 mV mmHg−1. Additionally, its topology allows a high integration capability. The strain gauges’ responses to pressure were studied and the fabrication process optimized to achieve high sensitivity, linearity, and reproducibility. The sequential acquisition of the different signals is carried out by a microcontroller, with a 10-bit ADC and a sample rate of 250 Hz. The pressure signals are then presented in a user-friendly interface, developed using the Integrated Development Environment software, QtCreator IDE, for better visualization by physicians.
Resumo:
Tese de Doutoramento Programa Doutoral em Engenharia Electrónica e Computadores.
Resumo:
Magdeburg, Univ., Fak. für Verfahrens- und Systemtechnik, Diss., 2015
Resumo:
Increasing greenhouse light transmission has a positive effect not only in Northern latitudes but in Mediterranean countries as well. A greenhouse, H2, with a tetrafluoroethylene copolymer 60 microns film, (Asahi Glass company, Aflex) characterised by its high light transmission and durability was compared to another greenhouse with a co-extruded film considered as a control, H1. Tomato crop response to the increase in light during winter and summer with high temperature and light was evaluated. Light transmission in H2 remained very high in spite of the observed dust accumulation and the low angle of incidence of the winter solar radiation. Transmissivity was clearly higher for H2 (81 to 83 % throughout the season) than in the control (around 63 %). The rest of the climatic parameters were similar in both greenhouses, either in the winter or in the summer evaluations. In spite of the high solar radiation in H2, the summer temperature could be maintained at the desired levels by using evaporative cooling. Accumulated tomato yield and quality was better in the H2 greenhouse (15 % more for the winter crop and 27% more for the summer crop). Fruit size was bigger in the winter crop. As an overall conclusion, the use of high light transmissive films in Mediterranean areas is very convenient for many vegetable crops. This is valid not only in winter but in summer, provided the greenhouse has good ventilation or evaporative cooling to overcome the increase in sensible heat caused by this increase in light..
Resumo:
INTRODUCTION AND HYPOTHESIS: This study aims to estimate fecal, urinary incontinence, and sexual function 6 years after an obstetrical anal sphincter tear. METHODS: Among 13,213 women who had a vaginal delivery of a cephalic singleton at term, 196 women sustained an anal sphincter tear. They were matched to 588 controls. Validated questionnaires grading fecal and urinary incontinence, and sexual dysfunction were completed by the participants. RESULTS: Severe fecal incontinence was more frequently reported by women who had sustained an anal sphincter tear compared to the controls. Women with an anal sphincter tear had no increased risk of urinary incontinence, but reported significantly more pain, difficulty with vaginal lubrication, and difficulty achieving orgasm compared to the controls. A fetal occiput posterior position during childbirth was an independent risk factor for both severe urinary incontinence and severe sexual dysfunction. CONCLUSIONS: Fecal incontinence is strongly associated with an anal sphincter tear. A fetal occiput posterior position represents a risk factor for urinary incontinence and sexual dysfunction.