758 resultados para Teaching practice in adult education
Resumo:
La mia tesi di dottorato ha ad oggetto lo studio e l’analisi del ruolo della Narrative all’interno di tre ambiti, quali Medical Ethics, Clinical Practice e Medical Education. La tesi è strutturata in 4 capitoli: i primi tre vanno a comporre la parte teorica mentre nel quarto capitolo viene riportata una ricerca sul campo da me svolta negli Stati Uniti. Nel primo capitolo, analizzo il ruolo della narrative all’interno della Medical Ethics specificando che cosa si intenda con etica narrativa, quali sono le motivazione alla base del suo sviluppo e chi sono i suoi principali esponenti. In questo capitolo, inoltre, esamino i problemi che l’etica narrativa solleva suggerendo un nuovo modo in cui essa si integra alla riflessione bioetica. Il secondo capitolo è dedicato al contributo della narrative nella Medical Practice investigando sia le modalità attraverso le quali il paziente può avvalersi della narrazione per analizzare la sua esperienza di malattia sia la cosiddetta Medicina Narrativa. Il terzo capitolo è dedicato all'analisi delle Medical Humanities, ossia di quelle discipline che all’interno della Medical Education si stanno rivelando strumenti efficaci per una formazione più equilibrata e completa dei professionisti della salute. Il quarto capitolo, invece, è dedicato alla descrizione di una ricerca svolta presso l’University of California – Irvine . Durante questa esperienza ho frequentato i corsi del Program in Medical Humanities and Arts diretto dalla Prof.ssa J. Shapiro, (programma in vigore da 13 anni e implementato allo scopo di migliorare alcune competenze nei futuri medici quali: l'empatia, l’altruismo, la compassione e la predisposizione alla cura verso i pazienti, oltre che per affinare le comunicazione clinica e la capacità di osservazione) e intervistato gli studenti che hanno preso parte a queste lezioni.
Resumo:
Purpose To update American Society of Clinical Oncology/American Society of Hematology recommendations for use of erythropoiesis-stimulating agents (ESAs) in patients with cancer. Methods An Update Committee reviewed data published between January 2007 and January 2010. MEDLINE and the Cochrane Library were searched. Results The literature search yielded one new individual patient data analysis and four literature-based meta-analyses, two systematic reviews, and 13 publications reporting new results from randomized controlled trials not included in prior or new reviews. Recommendations For patients undergoing myelosuppressive chemotherapy who have a hemoglobin (Hb) level less than 10 g/dL, the Update Committee recommends that clinicians discuss potential harms (eg, thromboembolism, shorter survival) and benefits (eg, decreased transfusions) of ESAs and compare these with potential harms (eg, serious infections, immune-mediated adverse reactions) and benefits (eg, rapid Hb improvement) of RBC transfusions. Individual preferences for assumed risk should contribute to shared decisions on managing chemotherapy-induced anemia. The Committee cautions against ESA use under other circumstances. If used, ESAs should be administered at the lowest dose possible and should increase Hb to the lowest concentration possible to avoid transfusions. Available evidence does not identify Hb levels � 10 g/dL either as thresholds for initiating treatment or as targets for ESA therapy. Starting doses and dose modifications after response or nonresponse should follow US Food and Drug Administration–approved labeling. ESAs should be discontinued after 6 to 8 weeks in nonresponders. ESAs should be avoided in patients with cancer not receiving concurrent chemotherapy, except for those with lower risk myelodysplastic syndromes. Caution should be exercised when using ESAs with chemotherapeutic agents in diseases associated with increased risk of thromboembolic complications. Table 1 lists detailed recommendations. This guideline was developed through a collaboration between the American Society of Clinical Oncology and the American Society of Hematology and has been published jointly by invitation and consent in both Journal of Clinical Oncology and Blood.
Resumo:
Purpose: To update American Society of Hematology/American Society of Clinical Oncology recommendations for use of erythropoiesis-stimulating agents (ESAs) in patients with cancer. Methods: An Update Committee reviewed data published between January 2007 and January 2010. MEDLINE and the Cochrane Library were searched. Results: The literature search yielded one new individual patient data analysis and four literature-based meta-analyses, two systematic reviews, and 13 publications reporting new results from randomized controlled trials not included in prior or new reviews. Recommendations: For patients undergoing myelosuppressive chemotherapy who have a hemoglobin (Hb) level less than 10 g/dL, the Update Committee recommends that clinicians discuss potential harms (eg, thromboembolism, shorter survival) and benefits (eg, decreased transfusions) of ESAs and compare these with potential harms (eg, serious infections, immune-mediated adverse reactions) and benefits (eg, rapid Hb improvement) of RBC transfusions. Individual preferences for assumed risk should contribute to shared decisions on managing chemotherapy-induced anemia. The Committee cautions against ESA use under other circumstances. If used, ESAs should be administered at the lowest dose possible and should increase Hb to the lowest concentration possible to avoid transfusions. Available evidence does not identify Hb levels 10 g/dL either as thresholds for initiating treatment or as targets for ESA therapy. Starting doses and dose modifications after response or nonresponse should follow US Food and Drug Administration-approved labeling. ESAs should be discontinued after 6 to 8 weeks in nonresponders. ESAs should be avoided in patients with cancer not receiving concurrent chemotherapy, except for those with lower risk myelodysplastic syndromes. Caution should be exercised when using ESAs with chemotherapeutic agents in diseases associated with increased risk of thromboembolic complications. Table 1 lists detailed recommendations.
Resumo:
The central challenge to educators in the liberal arts as in all areas of study is transfer of learning i.e. how can we design learning environments and instruction to that students will be able to use what they learn in appropriate new contexts? Alfred North Whitehead described this as the problem of ‘inert knowledge’ nearly a century ago and Dewey noted that instruction which helps students reproduce what is studied on exams might not produce the depth of understanding that allows for recognizing the relevance of what is known to a particular situation and the ability to apply it. Knowledge that is not conditionalized (i.e. in which the learner does not know when where and why it is to be used) is inert.
Resumo:
Is there a psychological basis for teaching and learning in the context of a liberal education, and if so, what might such a psychological basis look like? Traditional teaching and assessment often emphasize remembering facts and, to some extent, analyzing ideas. Such skills are important, but they leave out of the aspects of thinking that are most important not only in liberal education, but in life, in general. In this article, I propose a theory called WICS, which is an acronym for wisdom, intelligence, and creativity, synthesized. The basic idea underlying this theory is that, through liberal education, students need to acquire creative skills and attitudes to generate new ideas about how to adapt flexibly to a rapidly changing world, analytical skills and attitudes to ascertain whether these new ideas are good ones, practical skills and attitudes to implement the new ideas and convince others of their value, and wisdom-based skills and attitudes in order to ensure that the new ideas help to achieve a common good through the infusion of positive ethical values.
Resumo:
Teaching is a dynamic activity. It can be very effective, if its impact is constantly monitored and adjusted to the demands of changing social contexts and needs of learners. This implies that teachers need to be aware about teaching and learning processes. Moreover, they should constantly question their didactical methods and the learning resources, which they provide to their students. They should reflect if their actions are suitable, and they should regulate their teaching, e.g., by updating learning materials based on new knowledge about learners, or by motivating learners to engage in further learning activities. In the last years, a rising interest in ‘learning analytics’ is observable. This interest is motivated by the availability of massive amounts of educational data. Also, the continuously increasing processing power, and a strong motivation for discovering new information from these pools of educational data, is pushing further developments within the learning analytics research field. Learning analytics could be a method for reflective teaching practice that enables and guides teachers to investigate and evaluate their work in future learning scenarios. However, this potentially positive impact has not yet been sufficiently verified by learning analytics research. Another method that pursues these goals is ‘action research’. Learning analytics promises to initiate action research processes because it facilitates awareness, reflection and regulation of teaching activities analogous to action research. Therefore, this thesis joins both concepts, in order to improve the design of learning analytics tools. Central research question of this thesis are: What are the dimensions of learning analytics in relation to action research, which need to be considered when designing a learning analytics tool? How does a learning analytics dashboard impact the teachers of technology-enhanced university lectures regarding ‘awareness’, ‘reflection’ and ‘action’? Does it initiate action research? Which are central requirements for a learning analytics tool, which pursues such effects? This project followed design-based research principles, in order to answer these research questions. The main contributions are: a theoretical reference model that connects action research and learning analytics, the conceptualization and implementation of a learning analytics tool, a requirements catalogue for useful and usable learning analytics design based on evaluations, a tested procedure for impact analysis, and guidelines for the introduction of learning analytics into higher education.
Resumo:
This chapter focuses on teaching practices used in multigrade classes and the importance of them being incorporated in teacher education as promising pedagogies for future use. Multigrade classes - defined as classes in which two or more grades are taught together - are common worldwide. Hence, there is a need for teacher candidates to become familiar with how to teach in split grade classrooms. However, research on multigrade teaching as well as its development in teacher education studies has been neglected, even though multigrade teachers need special skills to organize instruction in their heterogeneous classrooms. We argue that in successful multigrade teaching practices, the heterogeneity of students is taken into account and cultivated. Based on content analysis of teacher interviews conducted in Austrian and Finnish primary schools, we recommend teaching practices such as spiral curricula, working plans, and peer learning as promising teacher education pedagogies for future multigrade class teaching. We also suggest that the professional skills required in high-quality teaching practices in multigrade teaching should be further studied by researchers and educators.
Resumo:
Multidisciplinary training is widely appreciated in industry and business, and nevertheless usually is not addressed in the early stages of most undergraduate programs. We outline here a multidisciplinary course for undergraduates studying engineering in which mathematics would be the common language, the transverse tool. The goal is motivating students to learn more mathematics and as a result, improve the quality of engineering education. The course would be structured around projects in four branches in engineering: mechanical, electrical, civil and bio-tech. The projects would be chosen among a wide variety of topics in engineering practice selected with the guidance of professional engineers. In these projects mathematics should interact with at least two other basic areas of knowledge in engineering: chemistry, computers science, economics, design or physics.