921 resultados para Tannery effluent
Resumo:
"ERS-672."
Resumo:
"NUREG-0592."
Resumo:
Mode of access: Internet.
Resumo:
Mode of access: Internet.
Resumo:
"Project no. 80.160."
Resumo:
"Printed: April 1988."
Resumo:
"Project no. 80.094."
Resumo:
"November 1986."
Resumo:
Project no. 20.070B
Resumo:
"Project 87/7012."
Resumo:
Project no. 20.073.
Resumo:
Effluent from a land based shrimp farm was detected in a receiving creek as changes in physical, chemical and biological parameters. The extent and severity of these changes depended on farm operations. This assessment was conducted at three different stages of shrimp-pond maturity, including (1) when the ponds were empty, (2) full and (3) being harvested. Methods for assessing farm effluent in receiving waters included physical/chemical analyses of the water column, phytoplankton bioassays and nitrogen isotope signatures of marine flora. Comparisons were made with an adjacent creek that served as the farms intake creek and did not directly receive effluent. Physical/chemical parameters identified distinct changes in the receiving creek with respect to farm operations. Elevated water column NH4+ (18.5+/-8.0 muM) and chlorophyll a concentrations (5.5+/-1.9 mug/l) were measured when the farm was in operation, in contrast to when the farm was inactive (1.3+/-0.3 muM and 1.2+/-0.6 mug/l, respectively). At all times, physically chemical parameters at the mouth of the effluent creek, were equivalent to control values, indicating effluent was contained within the effluent-receiving creek. However, elevated delta(15)N signatures of mangroves (up to similar to8parts per thousand) and macroalgae (up to similar to5parts per thousand) indicated a broader influence of shrimp farm effluent, extending to the lower regions of the farms intake creek. Bioassays at upstream sites close to the location of farm effluent discharge indicated that phytoplankton at these sites did not respond to further nutrient additions, however downstream sites showed large growth responses. This suggested that further nutrient loading from the shrimp farm, resulting in greater nutrient dispersal, will increase the extent of phytoplankton blooms downstream from the site of effluent discharge. When shrimp ponds were empty water quality in the effluent and intake creeks was comparable. This indicated that observed elevated nutrient and phytoplankton concentrations were directly attributable to farm operations. (C) 2003 Elsevier Ltd. All rights reserved.
Resumo:
Intensive animal industries create large volumes of nutrient rich effluent, which, if untreated, has the potential for substantial environmental degradation. Aquatic plants in aerobic lagoon systems have the potential to achieve inexpensive and efficient remediation of effluent, and to recover valuable nutrients that would otherwise be lost. Members of the family Lemnaceae (duckweeds) are widely used in lagoon systems, but despite their widespread use in the cleansing of sewage, only limited research has been conducted into their growth in highly eutrophic media, and little has been done to systematically distinguish between different types of media. This study examined the growth characteristics of duckweed in abattoir effluent, and explored possible ways of ameliorating the inhibitory factors to growth on this medium. A series of pot trials was conducted to test the tolerance of duckweed to abattoir effluent partially remediated by a sojourn in anaerobic fermentation ponds, both in its unmodified form, and after the addition of acid to manipulate pH, and the addition of bentonite. Unmodified abattoir effluent was highly toxic to duckweed, although duckweed remained viable and grew sub optimally in media with total ammonia nitrogen (TAN) concentrations of up to 100 mg/l. Duckweed also grew vigorously in effluent diluted 1:4 v/v, containing 56 mg TAN/L and also modified by addition of acid to decrease pH to 7 and by adding bentonite (0.5%).
Resumo:
Two bacterial strains, 2AC and 4BC, both capable of utilizing naphthalene-2-sulfonic acid (2-NSA) as a sole source of carbon, were isolated from activated sludges previously exposed to tannery wastewater. Enrichments were carried out in mineral salt medium (MSM) with 2-NSA as the sole carbon source. 16S rDNA sequencing analysis indicated that 2AC is an Arthrobacter sp. and 4BC is a Comamonas sp. Within 33 h, both isolates degraded 100% of 2-NSA in MSM and also 2-NSA in non-sterile tannery wastewater. The yield coefficient was 0.33 g biomass dry weight per gram of 2-NSA. A conceptual model, which describes the aerobic transformation of organic matter, was used for interpreting the biodegradation kinetics of 2-NSA. The half-lives for 2-NSA, at initial concentrations of 100 and 500 mg/l in MSM, ranged from 20 h (2AC) to 26 h (4BC) with lag-phases of 8 h (2AC) and 12 h (4BC). The carbon balance indicates that 75-90% of the initial TOC (total organic carbon) was mineralized, 5-20% remained as DOC (dissolved organic carbon) and 3-10% was biomass carbon. The principal metabolite of 2-NSA biodegradation (in both MSM and tannery wastewater) produced by Comamonas sp. 4BC had a MW of 174 and accounted for the residual DOC (7.0-19.0% of the initial TOC and 66% of the remaining TOC). Three to ten percent of the initial TOC (33% of the remaining TOC) was associated with biomass. The metabolite was not detected when Arthrobacter sp. 2AC was used, and a lower residual DOC and biomass carbon were recorded. This suggests that the two strains may use different catabolic pathways for 2-NSA degradation. The rapid biodegradation of 2-NSA (100 mg/l) added to non-sterile tannery wastewater (total 2-NSA, 105 mg/l) when inoculated with either Arthrobacter 2AC or Comamonas 4BC showed that both strains were able to compete with the indigenous microorganisms and degrade 2-NSA even in the presence of alternate carbon sources (DOC in tannery wastewater = 91 mg/l). The results provide information useful for the rational design of bioreactors for tannery wastewater treatment.
Resumo:
Soil absorption systems (SAS) are used commonly to treat and disperse septic tank effluent (STE). SAS can hydraulically fail as a result of the low permeable biomat zone that develops on the infiltrative surface. The objectives of this experiment were to compare the hydraulic properties of biomats grown in soils of different textures, to investigate the long-term acceptance rates (LTAR) from prolonged application of STE, and to assess if soils were of major importance in determining LTAR. The STE was applied to repacked sand, Oxisol and Vertisol soil columns over a period of 16 months, at equivalent hydraulic loading rates of 50, 35 and 8 L/m(2)/d, respectively Infiltration rates, soil matric potentials, and biomat hydraulic properties were measured either directly from the soil columns or calculated using established soil physics theory. Biomats 1 to 2 cm thick developed in all soils columns with hydraulic resistances of 27 to 39 d. These biomats reduced a 4 order of magnitude variation in saturated hydraulic conductivity (K.) between the soils to a one order of magnitude variation in LTAR. A relationship between biomat resistance and organic loading rate was observed in all soils. Saturated hydraulic conductivity influenced the rate and extent of biomat development. However, once the biomat was established, the LTAR was governed by the resistance of the biomat and the sub-biomat soil unsaturated flow regime induced by the biomat. Results show that whilst initial soil K. is likely to be important in the establishment of the biomat zone in a trench, LTAR is determined by the biomat resistance and the unsaturated soil hydraulic conductivity, not the K, of a soil. The results call into question the commonly used approach of basing the LTAR, and ultimately trench length in SAS, on the initial K, of soils. (c) 2006 Elsevier Ltd. All rights reserved.