970 resultados para TUNGSTEN
Resumo:
The mechanical behavior of three tungsten (W) alloys with vanadium (V) and lanthana (La2O3) additions (W–4%V, W–1%La2O3, W–4%V–1%La2O3) processed by hot isostatic pressing (HIP) have been compared with pure-W to analyze the influence of the dopants. Mechanical characterization was performed by three point bending (TPB) tests in an oxidizing air atmosphere and temperature range between 77 (immersion tests in liquid nitrogen) and 1273 K, through which the fracture toughness, flexural strength, and yield strength as function of temperature were obtained. Results show that the V and La2O3 additions improve the mechanical properties and oxidation behavior, respectively. Furthermore, a synergistic effect of both dopants results in an extraordinary increase of the flexure strength, fracture toughness and resistance to oxidation compared to pure-W, especially at higher temperatures. In addition, a new experimental method was developed to obtain a very small notch tip radius (around 5–7 μm) and much more similar to a crack through the use of a new machined notch. The fracture toughness results were lower than those obtained with traditional machining of the notch, which can be explained with electron microscopy, observations of deformation in the rear part of the notch tip. Finally, scanning electron microscopy (SEM) examination of the microstructure and fracture surfaces was used to determine and analyze the relationship between the macroscopic mechanical properties and the micromechanisms of failure involved, depending on the temperature and the dispersion of the alloy.
Resumo:
The target is to evaluate the mechanical behavior of Ti and La2O3 dispersed W alloy, processed by HIP and compare it with a reference pure-W. Tests were performed in both oxidant (air) and inert (vacuum) atmosphere in a temperature range from -196 to 1200 °C.
Resumo:
One of the challenges of science and engineering nowadays is to develop new ways to supply energy in a sustainable and ecological mode. The fussion energy could be the final answer but a myriad of problems must be solved previously.
Resumo:
The most promising materials to be used as Plasma Facing Components(PFC),in the International Thermonuclear Experimental Reactor (ITER), are tungsten alloys. However these materials have to withstand extreme operating conditions such as those that will be used inside the reactor.
Resumo:
Mechanical degradation of tungsten alloys at extreme temperatures in vacuum and oxidation atmospheres.
Resumo:
The current magnetic confinement nuclear fusion power reactor concepts going beyond ITER are based on assumptions about the availability of materials with extreme mechanical, heat, and neutron load capacity. In Europe, the development of such structural and armour materials together with the necessary production, machining, and fabrication technologies is pursued within the EFDA long-term fusion materials programme. This paper reviews the progress of work within the programme in the area of tungsten and tungsten alloys. Results, conclusions, and future projections are summarized for each of the programme´s main subtopics, which are: (1) fabrication, (2) structural W materials, (3) W armour materials, and (4) materials science and modelling. It gives a detailed overview of the latest results on materials research, fabrication processes, joining options, high heat flux testing, plasticity studies, modelling, and validation experiments.
Resumo:
This study evaluates the mechanical behaviour of an Y2O3-dispersed tungsten (W) alloy and compares it to a pure W reference material. Both materials were processed via mechanical alloying (MA) and subsequent hot isostatic pressing (HIP). We performed non-standard three-point bending (TPB) tests in both an oxidising atmosphere and vacuum across a temperature range from 77 K, obtained via immersion in liquid nitrogen, to 1473 K to determine the mechanical strength, yield strength and fracture toughness. This research aims to evaluate how the mechanical behaviour of the alloy is affected by oxides formed within the material at high temperatures, primarily from 873 K, when the materials undergo a massive thermal degradation. The results indicate that the alloy is brittle to a high temperature (1473 K) under both atmospheres and that the mechanical properties degrade significantly above 873 K. We also used Vickers microhardness tests and the dynamic modulus by impulse excitation technique (IET) to determine the elastic modulus at room temperature. Moreover, we performed nanoindentation tests to determine the effect of size on the hardness and elastic modulus; however, no significant differences were found. Additionally, we calculated the relative density of the samples to assess the porosity of the alloy. Finally, we analysed the microstructure and fracture surfaces of the tested materials via field emission scanning electron microscopy (FE-SEM) and transmission electron microscopy (TEM). In this way, the relationship between the macroscopic mechanical properties and micromechanisms of failure could be determined based on the temperature and oxides formed
Resumo:
Here we show that potassium-doped tungsten foil should be preferred to pure tungsten foil when considering tungsten laminate pipes for structural divertor applications. Potassium-doped tungsten materials are well known from the bulb industry and show an enhanced creep and recrystallization behaviour that can be explained by the formation of potassium-filled bubbles that are surrounding the elongated grains, leading to an interlocking of the microstructure. In this way, the ultra-fine grained (UFG) microstructure of tungsten foil can be stabilized and with it the extraordinary mechanical properties of the foil in terms of ductility, toughness, brittle-to-ductile transition, and radiation resistance. In this paper we show the results of three-point bending tests performed at room temperature on annealed pure tungsten and potassium-doped tungsten foils (800, 900, 1000, 1100, 1200, 1300, 1400, 1600, 1800, 2000, 2200, and 2400 °C for 1 h in vacuum). The microstructural assessment covers the measurement of the hardness and analyses of fractured surfaces as well as a comparison of the microstructure by optical microscopy. The results show that there is a positive effect of potassium-doped tungsten foils compared to pure tungsten foil and demonstrate the potential of the doped foil
Resumo:
En una planta de fusión, los materiales en contacto con el plasma así como los materiales de primera pared experimentan condiciones particularmente hostiles al estar expuestos a altos flujos de partículas, neutrones y grandes cargas térmicas. Como consecuencia de estas diferentes y complejas condiciones de trabajo, el estudio, desarrollo y diseño de estos materiales es uno de los más importantes retos que ha surgido en los últimos años para la comunidad científica en el campo de los materiales y la energía. Debido a su baja tasa de erosión, alta resistencia al sputtering, alta conductividad térmica, muy alto punto de fusión y baja retención de tritio, el tungsteno (wolframio) es un importante candidato como material de primera pared y como posible material estructural avanzado en fusión por confinamiento magnético e inercial. Sin embargo, el tiempo de vida del tungsteno viene controlado por diversos factores como son su respuesta termo-mecánica en la superficie, la posibilidad de fusión y el fallo por acumulación de helio. Es por ello que el tiempo de vida limitado por la respuesta mecánica del tungsteno (W), y en particular su fragilidad, sean dos importantes aspectos que tienes que ser investigados. El comportamiento plástico en materiales refractarios con estructura cristalina cúbica centrada en las caras (bcc) como el tungsteno está gobernado por las dislocaciones de tipo tornillo a escala atómica y por conjuntos e interacciones de dislocaciones a escalas más grandes. El modelado de este complejo comportamiento requiere la aplicación de métodos capaces de resolver de forma rigurosa cada una de las escalas. El trabajo que se presenta en esta tesis propone un modelado multiescala que es capaz de dar respuestas ingenieriles a las solicitudes técnicas del tungsteno, y que a su vez está apoyado por la rigurosa física subyacente a extensas simulaciones atomísticas. En primer lugar, las propiedades estáticas y dinámicas de las dislocaciones de tipo tornillo en cinco potenciales interatómicos de tungsteno son comparadas, determinando cuáles de ellos garantizan una mayor fidelidad física y eficiencia computacional. Las grandes tasas de deformación asociadas a las técnicas de dinámica molecular hacen que las funciones de movilidad de las dislocaciones obtenidas no puedan ser utilizadas en los siguientes pasos del modelado multiescala. En este trabajo, proponemos dos métodos alternativos para obtener las funciones de movilidad de las dislocaciones: un modelo Monte Cario cinético y expresiones analíticas. El conjunto de parámetros necesarios para formular el modelo de Monte Cario cinético y la ley de movilidad analítica son calculados atomísticamente. Estos parámetros incluyen, pero no se limitan a: la determinación de las entalpias y energías de formación de las parejas de escalones que forman las dislocaciones, la parametrización de los efectos de no Schmid característicos en materiales bcc,etc. Conociendo la ley de movilidad de las dislocaciones en función del esfuerzo aplicado y la temperatura, se introduce esta relación como ecuación de flujo dentro de un modelo de plasticidad cristalina. La predicción del modelo sobre la dependencia del límite de fluencia con la temperatura es validada experimentalmente con ensayos uniaxiales en tungsteno monocristalino. A continuación, se calcula el límite de fluencia al aplicar ensayos uniaxiales de tensión para un conjunto de orientaciones cristalográticas dentro del triángulo estándar variando la tasa de deformación y la temperatura de los ensayos. Finalmente, y con el objetivo de ser capaces de predecir una respuesta más dúctil del tungsteno para una variedad de estados de carga, se realizan ensayos biaxiales de tensión sobre algunas de las orientaciones cristalográficas ya estudiadas en función de la temperatura.-------------------------------------------------------------------------ABSTRACT ----------------------------------------------------------Tungsten and tungsten alloys are being considered as leading candidates for structural and functional materials in future fusion energy devices. The most attractive properties of tungsten for the design of magnetic and inertial fusion energy reactors are its high melting point, high thermal conductivity, low sputtering yield and low longterm disposal radioactive footprint. However, tungsten also presents a very low fracture toughness, mostly associated with inter-granular failure and bulk plasticity, that limits its applications. As a result of these various and complex conditions of work, the study, development and design of these materials is one of the most important challenges that have emerged in recent years to the scientific community in the field of materials for energy applications. The plastic behavior of body-centered cubic (bcc) refractory metals like tungsten is governed by the kink-pair mediated thermally activated motion of h¿ (\1 11)i screw dislocations on the atomistic scale and by ensembles and interactions of dislocations at larger scales. Modeling this complex behavior requires the application of methods capable of resolving rigorously each relevant scale. The work presented in this thesis proposes a multiscale model approach that gives engineering-level responses to the technical specifications required for the use of tungsten in fusion energy reactors, and it is also supported by the rigorous underlying physics of extensive atomistic simulations. First, the static and dynamic properties of screw dislocations in five interatomic potentials for tungsten are compared, determining which of these ensure greater physical fidelity and computational efficiency. The large strain rates associated with molecular dynamics techniques make the dislocation mobility functions obtained not suitable to be used in the next steps of the multiscale model. Therefore, it is necessary to employ mobility laws obtained from a different method. In this work, we suggest two alternative methods to get the dislocation mobility functions: a kinetic Monte Carlo model and analytical expressions. The set of parameters needed to formulate the kinetic Monte Carlo model and the analytical mobility law are calculated atomistically. These parameters include, but are not limited to: enthalpy and energy barriers of kink-pairs as a function of the stress, width of the kink-pairs, non-Schmid effects ( both twinning-antitwinning asymmetry and non-glide stresses), etc. The function relating dislocation velocity with applied stress and temperature is used as the main source of constitutive information into a dislocation-based crystal plasticity framework. We validate the dependence of the yield strength with the temperature predicted by the model against existing experimental data of tensile tests in singlecrystal tungsten, with excellent agreement between the simulations and the measured data. We then extend the model to a number of crystallographic orientations uniformly distributed in the standard triangle and study the effects of temperature and strain rate. Finally, we perform biaxial tensile tests and provide the yield surface as a function of the temperature for some of the crystallographic orientations explored in the uniaxial tensile tests.
Resumo:
El wolframio (W) y sus aleaciones se consideran los mejores candidatos para la construcción del divertor en la nueva generación de reactores de fusión nuclear. Este componente va a recibir las cargas térmicas más elevadas durante el funcionamiento del reactor ya que estará en contacto directo con el plasma. En los últimos años, después de un profundo análisis y siguiendo una estrategia de reducción de costes, la Organización de ITER tomó la decisión de construir el divertor integramente de wolframio desde el principio. Por ello, el wolframio no sólo actuará como material en contacto con el plasma (PFM), sino que también tendría aplicaciones estructurales. El wolframio, debido a sus excelentes propiedades termo-físicas, cumple todos los requerimientos para ser utilizado como PFM, sin embargo, su inherente fragilidad pone en peligro su uso estructural. Por tanto, uno de los principales objetivos de esta tesis es encontrar una aleación de wolframio con menor fragilidad. Durante éste trabajo, se realizó la caracterización microstructural y mecánica de diferentes materiales basados en wolframio. Sin embargo, ésta tarea es un reto debido a la pequeña cantidad de material suministrado, su reducido tamaño de grano y fragilidad. Por ello, para una correcta medida de todas las propiedades físicas y mecánicas se utilizaron diversas técnicas experimentales. Algunas de ellas se emplean habitualmente como la nanoindentación o los ensayos de flexión en tres puntos (TPB). Sin embargo, otras fueron especificamente desarrolladas e implementadas durante el desarrollo de esta tesis como es el caso de la medida real de la tenacidad de fractura en los materiales masivos, o de las medidas in situ de la tenacidad de fractura en las láminas delgadas de wolframio. Diversas composiciones de aleaciones de wolframio masivas (W-1% Y2O3, W-2% V-0.5% Y2O3, W-4% V-0.5% Y2O3, W-2% Ti-1% La2O3 y W-4% Ti-1% La2O3) se han estudiado y comparado con un wolframio puro producido en las mismas condiciones. Estas aleaciones, producidas por ruta pulvimetalúrgica de aleado mecánico (MA) y compactación isostática en caliente (HIP), fueron microstructural y mecánicamente caracterizadas desde 77 hasta 1473 K en aire y en alto vacío. Entre otras propiedades físicas y mecánicas se midieron la dureza, el módulo elástico, la resistencia a flexión y la tenacidad de fractura para todas las aleaciones. Finalmente se analizaron las superficies de fractura después de los ensayos de TPB para relacionar los micromecanismos de fallo con el comportamiento macroscópico a rotura. Los resultados obtenidos mostraron un comportamiento mecánico frágil en casi todo el intervalo de temperaturas y para casi todas las aleaciones sin mejoría de la temperatura de transición dúctil-frágil (DBTT). Con el fin de encontrar un material base wolframio con una DBTT más baja se realizó también un estudio, aún preliminar, de láminas delgadas de wolframio puro y wolframio dopado con 0.005wt.% potasio (K). Éstas láminas fueron fabricadas industrialmente mediante sinterizado y laminación en caliente y en frío y se sometieron posteriormente a un tratamiento térmico de recocido desde 1073 hasta 2673 K. Se ha analizado la evolución de su microestructura y las propiedades mecánicas al aumentar la temperatura de recocido. Los resultados mostraron la estabilización de los granos de wolframio con el incremento de la temperatura de recocido en las láminas delgadas de wolframio dopado con potasio. Sin embargo, es necesario realizar estudios adicionales para entender mejor la microstructura y algunas propiedades mecánicas de estos materiales, como la tenacidad de fractura. Tungsten (W) and tungsten-based alloys are considered to be the best candidate materials for fabricating the divertor in the next-generation nuclear fusion reactors. This component will experience the highest thermal loads during the operation of a reactor since it directly faces the plasma. In recent years, after thorough analysis that followed a strategy of cost reduction, the ITER Organization decided to built a full-tunsgten divertor before the first nuclear campaigns. Therefore, tungsten will be used not only as a plasma-facing material (PFM) but also in structural applications. Tungsten, due to its the excellent thermo-physical properties fulfils the requirements of a PFM, however, its use in structural applications is compromised due to its inherent brittleness. One of the objectives of this phD thesis is therefore, to find a material with improved brittleness behaviour. The microstructural and mechanical characterisation of different tunsgten-based materials was performed. However, this is a challenging task because of the reduced laboratory-scale size of the specimens provided, their _ne microstructure and their brittleness. Consequently, many techniques are required to ensure an accurate measurement of all the mechanical and physical properties. Some of the applied methods have been widely used such as nanoindentation or three-point bending (TPB) tests. However, other methods were specifically developed and implemented during this work such as the measurement of the real fracture toughness of bulk-tunsgten alloys or the in situ fracture toughness measurements of very thin tungsten foils. Bulk-tunsgten materials with different compositions (W-1% Y2O3, W-2% V- 0.5% Y2O3, W-4% V-0.5% Y2O3, W-2% Ti-1% La2O3 and W-4% Ti-1% La2O3) were studied and compared with pure tungsten processed under the same conditions. These alloys, produced by a powder metallurgical route of mechanical alloying (MA) and hot isostatic pressing (HIP), were microstructural and mechanically characterised from 77 to 1473 K in air and under high vacuum conditions. Hardness, elastic modulus, flexural strength and fracture toughness for all of the alloys were measured in addition to other physical and mechanical properties. Finally, the fracture surfaces after the TPB tests were analysed to correlate the micromechanisms of failure with the macroscopic behaviour. The results reveal brittle mechanical behaviour in almost the entire temperature range for the alloys and micromechanisms of failure with no improvement in the ductile-brittle transition temperature (DBTT). To continue the search of a tungsten material with lowered DBTT, a preliminary study of pure tunsgten and 0.005 wt.% potassium (K)-doped tungsten foils was also performed. These foils were industrially produced by sintering and hot and cold rolling. After that, they were annealed from 1073 to 2673 K to analyse the evolution of the microstructural and mechanical properties with increasing annealing temperature. The results revealed the stabilisation of the tungsten grains with increasing annealing temperature in the potassium-doped tungsten foil. However, additional studies need to be performed to gain a better understanding of the microstructure and mechanical properties of these materials such as fracture toughness.
Resumo:
Self-passivating tungsten based alloys will provide a major safety advantage compared to pure tungsten when used as first wall armor of future fusion reactors, due to the formation of a protective oxide layer which prevents the formation of volatile and radioactive WO3 in case of a loss of coolant accident with simultaneous air ingress. Bulk WCr10Ti2 alloys were manufactured by two different powder metallurgical routes: (1) mechanical alloying (MA) followed by hot isostatic pressing (HIP) of metallic capsules, and (2) MA, compaction, pressureless sintering in H2 and subsequent HIPing without encapsulation. Both routes resulted in fully dense materials with homogeneous microstructure and grain sizes of 300 nm and 1 μm, respectively. The content of impurities remained unchanged after HIP, but it increased after sintering due to binder residue. It was not possible to produce large samples by route (2) due to difficulties in the uniaxial compaction stage. Flexural strength and fracture toughness measured on samples produced by route (1) revealed a ductile-to-brittle-transition temperature (DBTT) of about 950 °C. The strength increased from room temperature to 800 °C, decreasing significantly in the plastic region. An increase of fracture toughness is observed around the DBTT.
Resumo:
Tungsten (W) and its alloys are very promising materials for producing plasma-facing components (PFCs) in the fusion power reactors of the near future, even as a structural part in them. However, whereas the properties of pure tungsten are suitable for a PFC, its structural applications are still limited due to its low toughness, ductile to brittle transition temperature and recrystallization behaviour. Therefore, many efforts have been made to improve its performance by alloying tungsten with other elements. Hence, in this investigation, the thermo-mechanical performance of two new tungsten-tantalum materials has been evaluated. Materials with We5wt.%Ta and We15wt.%Ta were processed by mechanical alloying (MA) and later consolidation by hot isostatic pressing (HIP), with distinct settings for each composition. Thus, it was possible to determine the relationship between the microstructure and the addition of Ta with the macroscopic mechanical properties. These were measured by means of hardness, flexural strength and fracture toughness, in the temperature range of 300e1473 K. The microstructure and the fracture surfaces features of the tested materials were analysed by Field Emission Scanning Electron Microscopy (FESEM).
Resumo:
A novel and environment friendly analytical method is reported for total chromium determination and chromium speciation in water samples, whereby tungsten coil atomic emission spectrometry (WCAES) is combined with in situ ionic liquid formation dispersive liquid–liquid microextraction (in situ IL-DLLME). A two stage multivariate optimization approach has been developed employing a Plackett–Burman design for screening and selection of the significant factor involved in the in situ IL-DLLME procedure, which was later optimized by means of a circumscribed central composite design. The optimum conditions were complexant concentration: 0.5% (or 0.1%); complexant type: DDTC; IL anion: View the MathML sourcePF6−; [Hmim][Cl] IL amount: 60 mg; ionic strength: 0% NaCl; pH: 5 (or 2); centrifugation time: 10 min; and centrifugation speed: 1000 rpm. Under the optimized experimental conditions the method was evaluated and proper linearity was obtained with a correlation coefficient of 0.991 (5 calibration standards). Limits of detection and quantification for both chromium species were 3 and 10 µg L−1, respectively. This is a 233-fold improvement when compared with chromium determination by WCAES without using preconcentration. The repeatability of the proposed method was evaluated at two different spiking levels (10 and 50 µg L−1) obtaining coefficients of variation of 11.4% and 3.6% (n=3), respectively. A certified reference material (SRM-1643e NIST) was analyzed in order to determine the accuracy of the method for total chromium determination and 112.3% and 2.5 µg L−1 were the recovery (trueness) and standard deviation values, respectively. Tap, bottled mineral and natural mineral water samples were analyzed at 60 µg L−1 spiking level of total Cr content at two Cr(VI)/Cr(III) ratios, and relative recovery values ranged between 88% and 112% showing that the matrix has a negligible effect. To our knowledge, this is the first time that combines in situ IL-DLLME and WCAES.
Resumo:
Low-cost tungsten monometallic catalysts containing variable amounts of metal (4.5, 7.1 and 8.5%W) were prepared by impregnating alumina with ammonium metatungstate as an inexpensive precursor. The catalysts were characterized using ICP, XPS, XRD, TPR and hydrogen chemisorption. These techniques revealed mainly WO3-Al2O3 (W6+) species on the surface. The effects of the content of W nanoparticles and reaction temperature on activity and selectivity for the partial hydrogenation of 3-hexyne, a non-terminal alkyne, were assessed under moderate conditions of temperature and pressure. The monometallic catalysts prepared were found to be active and stereoselective for the production of (Z )-3-hexene, had the following order: 7.1WN/A > 8.5 WN/A ≥ 4.5 WN/A. Additionally, the performance of the synthesized xWN/A catalysts exhibited high sensitivity to temperature variation. In all cases, the maximum 3-hexyne total conversion and selectivity was achieved at 323 K. The performance of the catalysts was considered to be a consequence of two phenomena: a) the electronic effects, related to the high charge of W (+6), causing an intensive dipole moment in the hydrogen molecule (van der Waals forces) and leading to heterolytic bond rupture; the H+ and H- species generated approach a 3-hexyne adsorbate molecule and cause heterolytic rupture of the C≡C bond into C- = C+; and b) steric effects related to the high concentration of WO3 on 8.5WN/A that block the Al2O3 support. Catalyst deactivation was detected, starting at about 50 min of reaction time. Electrodeficient W6+ species are responsible for the formation of green oil at the surface level, blocking pores and active sites of the catalyst, particularly at low reaction temperatures (293 and 303 K). The resulting best catalyst, 7.1WN/A, has low fabrication cost and high selectivity for (Z )-3-hexene (94%) at 323 K. This selectivity is comparable to that of the classical and more expensive industrial Lindlar catalyst (5 wt% Pd). The alumina supported tungsten catalysts are low-cost potential replacements for the Lindlar industrial catalyst. These catalysts could also be used for preparing bimetallic W-Pd catalysts for selective hydrogenation of terminal and non-terminal alkynes.