939 resultados para TRIGONAL SELENIUM NANOWIRES


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Theoretical studies exist to compute the atomic arrangement in gold nanowires and the influence on their electronic behavior with decreasing diameter. Experimental studies, e.g., by transmission electron microscopy, on chemically synthesized ultrafine wires are however lacking owing to the unavailability of suitable protocols for sample preparation and the stability of the wires under electron beam irradiation. In this work, we present an atomic scale structural investigation on quantum single crystalline gold nanowires of 2 nm diameter, chemically prepared on a carbon film grid. Using low dose aberration-corrected high resolution (S)TEM, we observe an inhomogeneous strain distribution in the crystal, largely concentrated at the twin boundaries and the surface along with the presence of facets and surface steps leading to a noncircular cross section of the wires. These structural aspects are critical inputs needed to determine their unique electronic character and their potential as a suitable catalyst material. Furthermore, electron-beam-induced structural changes at the atomic scale, having implications on their mechanical behavior and their suitability as interconnects, are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Self catalytic growth of Indium Oxide (In2O3) nanowires (NWs) have been grown by resistive thermal evaporation of Indium (In) in the presence of oxygen without use of any additional metal catalyst. Nanowires growth took place at low substrate temperature of 370-420 degrees C at an applied current of 180-200 A to the evaporation boat. Morphology, microstructures, and compositional studies of the grown nanowires were performed by employing field emission scanning electron microscopy (FESEM), X-Ray diffraction (XRD), transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDS) and X-ray photoelectron spectroscopy (XPS) respectively. Nanowires were uniformly grown over the entire Si substrate and each of the nanowire is capped with a catalyst particle at their end. X-ray diffraction study reveals the crystalline nature of the grown nanowires. Transmission electron microscopy study on the nanowires further confirmed the single crystalline nature of the nanowires. Energy dispersive X-ray analysis on the nanowires and capped nanoparticle confirmed that Indium act as catalyst for In2O3 nanowires growth. A self catalytic Vapor-Liquid-Solid (VLS) growth mechanism was responsible for the growth of In2O3 nanowires. Effect of oxygen partial pressure variation and variation of applied currents to the evaporation boat on the nanowires growth was systematically studied. These studies concluded that at oxygen partial pressure in the range of 4 x 10(-4), 6 x 10(-4) mbar at applied currents to the evaporation boat of 180-200 A were the best conditions for good nanowires growth. Finally, we observed another mode of VLS growth along with the standard VLS growth mode for In2O3 nanowires similar to the growth mechanism reported for GaAs nanowires.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report the self catalytic growth of Sn-doped indium oxide (ITO) nanowires (NWs) over a large area glass and silicon substrates by electron beam evaporation method at low substrate temperatures of 250-400 degrees C. The ITO NWs growth was carried out without using an additional reactive oxygen gas and a metal catalyst particle. Ultrafine diameter (similar to 10-15 nm) and micron long ITO NWs growth was observed in a temperature window of 300-400 degrees C. Transmission electron microscope studies confirmed single crystalline nature of the NWs and energy dispersive spectroscopy studies on the NWs confirmed that the NWs growth proceeds via self catalytic vapor-liquid-solid (VLS) growth mechanism. ITO nanowire films grown on glass substrates at a substrate temperature of 300-400 degrees C have shown similar to 2-6% reflection and similar to 70-85% transmission in the visible region. Effect of deposition parameters was systematically investigated. The large area growth of ITO nanowire films would find potential applications in the optoelectronic devices. (C) 2014 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Diketopyrrolopyrrole (DPP)-based pi-conjugated copolymers with thiophene have exceptionally high electron mobilities. This paper investigates electronic properties and charge carrier mobilities of selenophene containing analogues. Two new copolymers, with alternating thiophene DPP (TDPP) and selenophene DPP (SeDPP) units, were synthesized. Two side-chains, hexyl (Hex) and triethylene glycol (TEG) were employed, yielding polymers designated as PTDPPSeDPP-Hex and PTDPPSeDPP-TEG. Selenophene systems have smaller band gaps, with concomitant enhancement of the stability of the reduced state. For both polymers, ambipolar mobilities were observed in organic field-effect transistors (OFET). Grazing incidence X-ray diffraction (GIXD) data indicates preferential edge-on orientation of PTDPPSeDPP-TEG, which leads to superior charge transport properties of the TEG substituted polymer, as compared to its Hex analogue. Time-dependent-density functional theory (TDDFT) calculations corroborate the decrease in the optical band gap with the inclusion of selenophene. Ambipolar charge transport is rationalized by exceptionally wide conduction bands. Delta SCF calculations confirm the larger electron affinity, and therefore the greater stability, of the reduced form of the selenophene-containing DPP polymer in presence of chloroform.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Present work provides an electrodeposition based methodology for synthesizing Ag-Ni-Fe nanowires. Nanowire morphology was achieved by using an anodic alumina membrane having cylindrical pores of similar to 200 nm diameter. Compositional analysis at a single nanowire level revealed a fairly uniform distribution of component elements in the nanowire volume. Structural characterization strongly indicated toward a presence of randomly oriented, non-equilibrium, nano-crystalline phase volume inside the nanowires. Magnetic characterization revealed a soft magnetic character for the as-synthesized Ag-Ni-Fe nanowires. (C) 2014 The Electrochemical Society. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work provides an electrodeposition-based methodology for synthesizing multicomponent nanowires containing Ag, Co and Ni atoms. Nanowire morphology was obtained by using an anodic alumina membrane with cylindrical pores of similar to 200-nm diameter. Structural, compositional and magnetic characterization revealed that the as-synthesized nanowires adopted a core-shell microstructure. The core (axial region) contained pure Ag phase volumes with a plate-like morphology oriented perpendicular to the nanowire axis. The shell (peripheral region) contained pure Ag nanoparticles along with superparamagnetic Co and Ni rich clusters.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This report provides information about an electrodeposition based two-step synthesis methodology for producing core-shell Ag-(Ni-O) nanowires and their detailed structural and compositional characterization using electron microscopy technique. Nanowires were produced by employing anodic alumina templates with a pore diameter of 200 nm. In the first step of the synthesis process, nanocrystalline Ni-O was electrodeposited in a controlled manner such that it heterogeneously nucleated and grew only on the template pore walls without filling the pores from bottom upwards. This alumina template with pore walls coated with Ni-O was then utilized as a template during the electrodeposition of Ag in the second step. Electrodeposited Ag filled the template pores to finally produce Ag-(Ni-O) core-shell nanowires with an overall diameter of 200 nm.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A detailed understanding of structure and stability of nanowires is critical for applications. Atomic resolution imaging of ultrathin single crystalline Au nanowires using aberration-corrected microscopy reveals an intriguing relaxation whereby the atoms in the close-packed atomic planes normal to the growth direction are displaced in the axial direction leading to wrinkling of the (111) atomic plane normal to the wire axis. First-principles calculations of the structure of such nanowires confirm this wrinkling phenomenon, whereby the close-packed planes relax to form saddle-like surfaces. Molecular dynamics studies of wires with varying diameters and different bounding surfaces point to the key role of surface stress on the relaxation process. Using continuum mechanics arguments, we show that the wrinkling arises due to anisotropy in the surface stresses and in the elastic response, along with the divergence of surface-induced bulk stress near the edges of a faceted structure. The observations provide new understanding on the equilibrium structure of nanoscale systems and could have important implications for applications in sensing and actuation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lead telluride (PbTe) is an established thermoelectric material which can be alloyed with sulphur and selenium to further enhance the thermoelectric properties. Here, a first principles study of ternary alloys PbSxTe(1-x) and PbSexTe(1-x) (0 <= x <= 1) based on the Virtual Crystal Approximation (VCA) is presented for different ratios of the isoelectronic atoms in each series. Equilibrium lattice parameters and elastic constants have been calculated and compared with the reported data. Anisotropy parameter calculated from the stiffness constants showed a slight improvement in anisotropy of elastic properties of the alloys over undoped PbTe. Furthermore, the alloys satisfied the predicted stability criteria from the elastic constants, showing stable structures, which agreed with the previously reported experimental results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nanomaterials with enzyme-like properties has attracted significant interest, although limited information is available on their biological activities in cells. Here we show that V2O5 nanowires (Vn) functionally mimic the antioxidant enzyme glutathione peroxidase by using cellular glutathione. Although bulk V2O5 is known to be toxic to the cells, the property is altered when converted into a nanomaterial form. The Vn nanozymes readily internalize into mammalian cells of multiple origin (kidney, neuronal, prostate, cervical) and exhibit robust enzyme-like activity by scavenging the reactive oxygen species when challenged against intrinsic and extrinsic oxidative stress. The Vn nanozymes fully restore the redox balance without perturbing the cellular antioxidant defense, thus providing an important cytoprotection for biomolecules against harmful oxidative damage. Based on our findings, we envision that biocompatible Vn nanowires can provide future therapeutic potential to prevent ageing, cardiac disorders and several neurological conditions, including Parkinson's and Alzheimer's disease.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An electrodeposition based methodology for synthesizing Ni-Cr-Fe nanowires is provided. As-synthesized nanowires were 200 nm in diameter and more than 5 mu m in length. Detailed characterization of the nanowires using electron microscopy technique revealed an amorphous microstructure for the nanowires with uniform distribution of Ni, Fe and Cr atoms. Annealing of the nanowire using the electron beam inside electron microscope resulted in gradual crystallization of amorphous microstructure into a nanocrystalline one which illustrated the potential for microstructural engineering of the nanowires. (C) 2014 The Electrochemical Society. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Although ultrathin Au nanowires (similar to 2 nm diameter) are expected to demonstrate several interesting properties, their extreme fragility has hampered their use in potential applications. One way to improve the stability is to grow them on substrates; however, there is no general method to grow these wires over large areas. The existing methods suffer from poor coverage and associated formation of larger nanoparticles on the substrate. Herein, we demonstrate a room temperature method for growth of these nanowires with high coverage over large areas by in situ functionalization of the substrate. Using control experiments, we demonstrate that an in situ functionalization of the substrate is the key step in controlling the areal density of the wires on the substrate. We show that this strategy works for a variety of substrates ranging like graphene, borosil glass, Kapton, and oxide supports. We present initial results on catalysis using the wires grown on alumina and silica beads and also extend the method to lithography-free device fabrication. This method is general and may be extended to grow ultrathin Au nanowires on a variety of substrates for other applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Using all-atom molecular dynamics (MD) simulations, we have studied the mechanical properties of ZnS/CdS core/shell nanowires. Our results show that the coating of a few-atomic-layer CdS shell on the ZnS nanowire leads to a significant change in the stiffness of the core/shell nanowires compared to the stiffness of pure ZnS nanowires. The binding energy between the core and shell region decreases due to the lattice mismatch at the core-shell interface. This reduction in binding energy plays an important role in determining the stiffness of a core/shell nanowire. We have also investigated the effects of the shell on the thermal conductivity and melting behavior of the nanowires.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work illustrates that a variety of nanowire microstructures can be obtained either by controlling the nanowire formation kinetics or by suitable thermal processing of as-deposited nanowires with nonequilibrium metastable microstructure. In the present work, 200-nm diameter Ag-Ni nanowires with similar compositions, but with significantly different microstructures, were electrodeposited. A 15 mA deposition current produced nanowires in which Ag-rich crystalline nanoparticles were embedded in a Ni-rich amorphous matrix. A 3 mA deposition current produced nanowires in which an Ag-rich crystalline phase formed a backbone-like configuration in the axial region of the nanowire, whereas the peripheral region contained Ni-rich nanocrystalline and amorphous phases. Isothermal annealing of the nanowires illustrated a phase evolution pathway that was extremely sensitive to the initial nanowire microstructure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A graphene and zinc oxide nanowires (G/ZnO NWs) based ultraviolet (UV) photodetector presents excellent responsivity and photocurrent gain with detectivity. Graphene due to higher charge carrier transport mobility induces faster response to UV illumination at the interface between ZnO and graphene with improved response and decay times as compared to a ZnO NWs device alone. A linear increase is revealed for both the responsivity and photocurrent gain of the G/ZnO NWs device with the applied bias. These results suggest that the G/ZnO NWs device exhibits great promise for highly efficient UV photodetectors.