947 resultados para THIN POLYMER-FILMS


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In spite of intense research on ZnO over the past decade, the detailed investigation about the crystallographic texture of as obtained ZnO thin films/coatings, and its deviation with growth surface is scarce. We report a systematic study about the orientation distribution of nanostructured ZnO thin films fabricated by microwave irradiation with the variation of substrates and surfactants. The nanostructured films comprising of ZnO nanorods are grown on semiconductor substrates such as Si(100), Ge(100)], conducting substrates (ITO-coated glass, Cr coated Si), and polymer coated Si (PMMA/Si) to examine the respective development of crystallographic texture. The ZnO deposited on semiconductor substrates yieldsmixed texture, whereas c-axis oriented ZnO nanostructured films are obtained by conducting substrate, and PMMA coated Si substrates. Among all the surfactants, nanostructured film produced by using the lower molecular weight of polymeric surfactants (polyvinylpyrrolidone) shows a stronger (0002) texture, and that can be tuned to (10 - 10) by increasing the molecular weight of the surfactant. The strongest basal pole is achieved for the ZnO deposited on PMMA coated Si as substrate, and cetyl-trimethyl ammonium bromide as cationic surfactant. The texture analysis is carried out by X-ray pole figure analysis using the Schultz reflection method. (C) 2015 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aluminum nitride (AlN) piezoelectric thin films with c-axis crystal orientation on polymer substrates can potentially be used for development of flexible electronics and lab-on-chip systems. In this study, we investigated the effects of deposition parameters on the crystal structure of AlN thin films on polymer substrates deposited by reactive direct-current magnetron sputtering. The results show that low sputtering pressure as well as optimized N 2/Ar flow ratio and sputtering power is beneficial for AlN (002) orientation and can produce a highly (002) oriented columnar structure on polymer substrates. High sputtering power and low N 2/Ar flow ratio increase the deposition rate. In addition, the thickness of Al underlayer also has a strong influence on the film crystallography. The optimal deposition parameters in our experiments are: deposition pressure 0.38 Pa, N 2/Ar flow ratio 2:3, sputtering power 414 W, and thickness of Al underlayer less than 100 nm. © 2012 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nanostructured polymer-fullerene thin films are among the most prominent materials for application in high efficient polymer solar cells. Specifically, poly(3-hexylthiophene) (P3HT) and fullerene derivatives (PCBM) blends are used as the donor/acceptor materials forming a bulk heterojunction. Although P3HT:PCBM properties have been extensively studied, less light has been set on its nanomechanical properties, which affect the device service life. In this work Atomic Force Acoustic Microscopy (AFAM), Atomic Force Spectroscopy and Nanoindentation were used to study the effect of the fullerene presence and the annealing on the P3HT:PCBM nanomechanical behavior. The P3HT:PCBM thin films were prepared by spin coating on glass substrates and then annealed at 100 °C and 145 °C for 30 min. Large phase separation was identified by optical and Atomic Force Microscopy (AFM) for the annealed samples. Needle-like PCBM crystals were formed and an increase of the polymer crystallinity degree with the increase of the annealing temperature was confirmed by X-ray diffraction. AFAM characterization revealed the presence of aggregates close to stiff PCBM crystals, possibly consisting of amorphous P3HT material. AFM force-distance curves showed a continuous change in stiffness in the vicinity of the PCBM crystals, due to the PCBM depletion near its crystals, and the AFM indentation provided qualitative results about the changes in P3HT nanomechanical response after annealing. © 2011 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The evolution of morphologies of isothermally crystallized thin films with different thicknesses of poly(L-lactide-bethylene oxide) diblock copolymer was observed by optical microscopy (OM) and atomic force microscopy (AFM). Dendritic superstructures stacked with lamellae were investigated in thin films with similar to 200 nm to similar to 400 nm thickness. The lamellar structure was a lozenge- or truncated-lozenge-shaped single crystal of PLLA confirmed by AFM observations. The contour of the dendritic superstructures is hexagonal, and two types of sectors, [110] and [100], can be classified in terms of the chain-folding and crystal growth directions. These phenomena Are due to the interplay of the crystallization of the PLLA block, the microphase separation of the block copolymer, and the effect of the film thickness.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Two kinds of dewetting and their transition induced by composition fluctuation due to different composition in blend [poly(methyl methacrylate) (PMMA) and poly(styrene-ran-acrylonitrile) (SAN)] films on SiOx substrate at 145 degrees C have been studied by in-situ atomic force microscopy (AFM). The results showed that morphology and pathway of dewetting depended crucially on the composition. Possible reason is the variation in intensity of composition fluctuation resulted from the change of components in polymer blend. Based on the discussion of this fluctuation due to the composition gradient, parameter of U-q0/E, which describes the initial amplitude of the surface undulation and original thickness of film respectively, has been employed to distinguish the morphologies of spontaneous dewetting including bicontinuous structures and holes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An electrochemiluminescence (ECL) sensor with good long-term stability and fast response time has been developed. The sensor was based on the immobilization of tris(2,2'-bipyridyl)ruthenium(II) (Ru(bpy)(3)(2+)) into the Eastman-AQ55D-silica composite thin films on a glassy carbon electrode. The ECL and electrochemistry of Ru(bpy)(3)(2+) immobilized in the composite thin films have been investigated, and the modified electrode was used for the ECL detection of oxalate, tripropylamine (TPA) and chlorpromazine (CPZ) in a flow injection analysis system and showed high sensitivity. Because of the strong electrostatic interaction and low hydrophobicity of Eastman-AQ55D, the sensor showed no loss of response over 2 months of dry storage. In use, the electrode showed only a 5% decrease in response over 100 potential cycles. The detection limit was 1 mumol l(-1) for oxalate and 0.1 mumol l(-1) for both TPA and CPZ (S/N = 3), respectively. The linear range extended from 50 mumol l(-1) to 5 mmol l(-1) for oxalate, from 20 mumol l(-1) to 1 mmol l(-1) for TPA, and from 1 mumol l(-1) to 200 mumol l(-1) for CPZ.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This proposed thesis is entitled “Plasma Polymerised Organic Thin Films: A study on the Structural, Electrical, and Nonlinear Optical Properties for Possible Applications. Polymers and polymer based materials find enormous applications in the realm of electronics and optoelectronics. They are employed as both active and passive components in making various devices. Enormous research activities are going on in this area for the last three decades or so, and many useful contributions are made quite accidentally. Conducting polymers is such a discovery, and eversince the discovery of conducting polyacetylene, a new branch of science itself has emerged in the form of synthetic metals. Conducting polymers are useful materials for many applications like polymer displays, high density data storage, polymer FETs, polymer LEDs, photo voltaic devices and electrochemical cells. With the emergence of molecular electronics and its potential in finding useful applications, organic thin films are receiving an unusual attention by scientists and engineers alike. This is evident from the vast literature pertaining to this field appearing in various journals. Recently, computer aided design of organic molecules have added further impetus to the ongoing research activities in this area. Polymers, especially, conducting polymers can be prepared both in the bulk and in the thinfilm form. However, many applications necessitate that they are grown in the thin film form either as free standing or on appropriate substrates. As far as their bulk counterparts are concerned, they can be prepared by various polymerisation techniques such as chemical routes and electrochemical means. A survey of the literature reveals that polymers like polyaniline, polypyrrole, polythiophene, have been investigated with a view to studying their structural electrical and optical properties. Among the various alternate techniques employed for the preparation of polymer thin films, the method of plasma polymerisation needs special attention in this context. The technique of plasma polymerisation is an inexpensive method and often requires very less infra structure. This method includes the employment of ac, rf, dc, microwave and pulsed sources. They produce pinhole free homogeneous films on appropriate substrates under controlled conditions. In conventional plasma polymerisation set up, the monomer is fed into an evacuated chamber and an ac/rf/dc/ w/pulsed discharge is created which enables the monomer species to dissociate, leading to the formation of polymer thin films. However, it has been found that the structure and hence the properties exhibited by plasma polymerized thin films are quite different from that of their counterparts produced by other thin film preparation techniques such as electrochemical deposition or spin coating. The properties of these thin films can be tuned only if the interrelationship between the structure and other properties are understood from a fundamental point of view. So very often, a through evaluation of the various properties is a pre-requisite for tailoring the properties of the thin films for applications. It has been found that conjugation is a necessary condition for enhancing the conductivity of polymer thin films. RF technique of plasma polymerisation is an excellent tool to induce conjugation and this modifies the electrical properties too. Both oxidative and reductive doping can be employed to modify the electrical properties of the polymer thin films for various applications. This is where organic thin films based on polymers scored over inorganic thin films, where in large area devices can be fabricated with organic semiconductors which is difficult to achieve by inorganic materials. For such applications, a variety of polymers have been synthesized such as polyaniline, polythiophene, polypyrrole etc. There are newer polymers added to this family every now and then. There are many virgin areas where plasma polymers are yet to make a foray namely low-k dielectrics or as potential nonlinear optical materials such as optical limiters. There are also many materials which are not been prepared by the method of plasma polymerisation. Some of the materials which are not been dealt with are phenyl hydrazine and tea tree oil. The advantage of employing organic extracts like tea tree oil monomers as precursors for making plasma polymers is that there can be value addition to the already existing uses and possibility exists in converting them to electronic grade materials, especially semiconductors and optically active materials for photonic applications. One of the major motivations of this study is to synthesize plasma polymer thin films based on aniline, phenyl hydrazine, pyrrole, tea tree oil and eucalyptus oil by employing both rf and ac plasma polymerisation techniques. This will be carried out with the objective of growing thin films on various substrates such as glass, quartz and indium tin oxide (ITO) coated glass. There are various properties namely structural, electrical, dielectric permittivity, nonlinear optical properties which are to be evaluated to establish the relationship with the structure and the other properties. Special emphasis will be laid in evaluating the optical parameters like refractive index (n), extinction coefficient (k), the real and imaginary components of dielectric constant and the optical transition energies of the polymer thin films from the spectroscopic ellipsometric studies. Apart from evaluating these physical constants, it is also possible to predict whether a material exhibit nonlinear optical properties by ellipsometric investigations. So further studies using open aperture z-scan technique in order to evaluate the nonlinear optical properties of a few selected samples which are potential nonlinear optical materials is another objective of the present study. It will be another endeavour to offer an appropriate explanation for the nonlinear optical properties displayed by these films. Doping of plasma polymers is found to modify both the electrical conductivity and optical properties. Iodine is found to modify the properties of the polymer thin films. However insitu iodine doping is tricky and the film often looses its stability because of the escape of iodine. An appropriate insitu technique of doping will be developed to dope iodine in to the plasma polymerized thin films. Doping of polymer thin films with iodine results in improved and modified optical and electrical properties. However it requires tools like FTIR and UV-Vis-NIR spectroscopy to elucidate the structural and optical modifications imparted to the polymer films. This will be attempted here to establish the role of iodine in the modification of the properties exhibited by the films

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Photothermal effect refers to heating of a sample due to the absorption of electromagnetic radiation. Photothermal (PT) heat generation which is an example of energy conversion has in general three kinds of applications. 1. PT material probing 2. PT material processing and 3. PT material destruction. The temperatures involved increases from 1-. 3. Of the above three, PT material probing is the most important in making significant contribution to the field of science and technology. Photothermal material characterization relies on high sensitivity detection techniques to monitor the effects caused by PT material heating of a sample. Photothermal method is a powerful high sensitivity non-contact tool used for non-destructive thermal characterization of materials. The high sensitivity of the photothermal methods has led to its application for analysis of low absorbance samples. Laser calorimetry, photothermal radiometry, pyroelectric technique, photoacoustic technique, photothermal beam deflection technique, etc. come under the broad class ofphotothermal techniques. However the choice of a suitable technique depends upon the nature of the sample, purpose of measurement, nature of light source used, etc. The present investigations are done on polymer thin films employing photothermal beam deflection technique, for the successful determination of their thermal diffusivity. Here the sample is excited by a He-Ne laser (A = 6328...\ ) which acts as the pump beam. Due to the refractive index gradient established in the sample surface and in the adjacent coupling medium, another optical beam called probe beam (diode laser, A= 6500A ) when passed through this region experiences a deflection and is detected using a position sensitive detector and its output is fed to a lock-in amplifier from which the amplitude and phase of the deflection can be directly obtained. The amplitude and phase of the signal is suitably analysed for determining the thermal diffusivity.The production of polymer thin film samples has gained considerable attention for the past few years. Plasma polymerization is an inexpensive tool for fabricating organic thin films. It refers to formation of polymeric materials under the influence of plasma, which is generated by some kind of electric discharge. Here plasma of the monomer vapour is generated by employing radio frequency (MHz) techniques. Plasma polymerization technique results in homogeneous, highly adhesive, thermally stable, pinhole free, dielectric, highly branched and cross-linked polymer films. The possible linkage in the formation of the polymers is suggested by comparing the FTIR spectra of the monomer and the polymer.Near IR overtone investigations on some organic molecules using local mode model are also done. Higher vibrational overtones often provide spectral simplification and greater resolution of peaks corresponding to nonequivalent X-H bonds where X is typically C, N or O. Vibrational overtone spectroscopy of molecules containing X-H oscillators is now a well established tool for molecular investigations. Conformational and steric differences between bonds and structural inequivalence ofCH bonds (methyl, aryl, acetylenic, etc.) are resolvable in the higher overtone spectra. The local mode model in which the X-H oscillators are considered to be loosely coupled anharmonic oscillators has been widely used for the interpretation of overtone spectra. If we are exciting a single local oscillator from the vibrational ground state to the vibrational state v, then the transition energy of the local mode overtone is given by .:lE a......v = A v + B v2 • A plot of .:lE / v versus v will yield A, the local mode frequency as the intercept and B, the local mode diagonal anharmonicity as the slope. Here A - B gives the mechanical frequency XI of the oscillator and B = X2 is the anharmonicity of the bond. The local mode parameters XI and X2 vary for non-equivalent X-H bonds and are sensitive to the inter and intra molecular environment of the X-H oscillator.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Plasma polymerization is found to be an excellent technique for the preparation of good quality, pinhole-free, polymer thin films from different monomer precursors. The present work describes the preparation and characterization of polypyrrole (PPy) thin films by ac plasma polymerization technique in their pristine and in situ iodine doped forms. The electrical conductivity studies of the aluminiumpolymeraluminium (AlpolymerAl) structures have been carried out and a space charge limited conduction (SCLC) mechanism is identified as the most probable mechanism of carrier transport in these polymer films. The electrical conductivity shows an enhanced value in the iodine doped sample. The reduction of optical band gap by iodine doping is correlated with the observed conductivity results.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Due to the great versatility of the properties of polymer thin films, special interest has been taken in recent years on their preparation and electrical properties. The present thesis is entirely devoted to the study of the formation, structure and electrical properties of plasma» polymerised polyacrylonitrile (PAN) thin films. Eventhough the studies are confined to a single polymer film, the results in general are applicable to similar polar polymer films.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ellipsometry and atomic force microscopy (AFM) were used to study the film thickness and the surface roughness of both 'soft' and solid thin films. 'Soft' polymer thin films of polystyrene and poly(styrene-ethylene/butylene-styrene) block copolymer were prepared by spin-coating onto planar silicon wafers. Ellipsometric parameters were fitted by the Cauchy approach using a two-layer model with planar boundaries between the layers. The smooth surfaces of the prepared polymer films were confirmed by AFM. There is good agreement between AFM and ellipsometry in the 80-130 nm thickness range. Semiconductor surfaces (Si) obtained by anisotropic chemical etching were investigated as an example of a randomly rough surface. To define roughness parameters by ellipsometry, the top rough layers were treated as thin films according to the Bruggeman effective medium approximation (BEMA). Surface roughness values measured by AFM and ellipsometry show the same tendency of increasing roughness with increased etching time, although AFM results depend on the used window size. The combined use of both methods appears to offer the most comprehensive route to quantitative surface roughness characterisation of solid films. Copyright (c) 2007 John Wiley & Sons, Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Stability and interface properties of cellulose acetate propionate (CAP) and cellulose acetate butyrate (CAB) films adsorbed from acetone or ethyl acetate onto Si wafers have been investigated by means of contact angle measurements and atomic force microscopy (AFM). Surface energy (gamma(total)(S)) values determined for CAP adsorbed from acetone are larger than those from ethyl acetate. In the case of CAB films adsorbed from ethyl acetate and acetone were similar. Dewetting was observed by AFM only for CAP films prepared from ethyl acetate. Positive values of effective Hamaker constant (A(eff)) were found only for CAP prepared from ethyl acetate, corroborating with dewetting phenomena observed by AFM. Oil the contrary, negative values of A(eff) were determined for CAP and CAB prepared from acetone and for CAB prepared from ethyl acetate, Corroborating with experimental observations. Sum frequency generation (SFG) vibrational spectra indicated that CAP and CAB films prepared from ethyl acetate present more alkyl groups oriented perpendicularly to the polymer-air interface than those films prepared from acetone. Such preferential orientation corroborates with macroscopic contact angle measurements. Moreover, SFG spectra showed that acetone hinds strongly to Si wafers, creating a new surface for CAP and CAB films. (C) 2008 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thin films of mixtures containing carboxymethylcellulose acetate butyrate (CMCAB) and carbohydrate based surfactant, namely, sorbitan monopalmitate (Span 40) or poly(oxyethylene) sorbitan monopalmitate (Tween 40) were spin-coated onto silicon wafers. The effect of surfactant concentration on resulting film morphology and surface toughness Was Studied by atomic force microscopy (AFM). Upon increasing the concentration of Span 40 in the mixture, films became rougher and more heterogeneous, indicating surface enrichment by Span 40 molecules. In the case of mixtures composed by CMCAB and Tween 40, the increase of Tween 40 in the mixture led to smoother and more homogeneous films, indicating compatibility between both components. Differential scanning calorimetry (DSC) revealed that Span 40 and Tween 40 act as plasticizers for CMCAB, leading to dramatic reduction of glass transition temperature of CMCAB, namely, Delta T(g) = -158 degrees C and Delta T(g)=-179 degrees C. respectively. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Spin-coated films of cellulose acetate (CA), cellulose acetate propionate (CAP), cellulose acetate butyrate (CAB) and carboxymethylcellulose acetate butyrate (CMCAB) have been characterized by ellipsometry, atomic force microscopy (AFM) and contact angle measurements. The films were spin-coated onto silicon wafers, a polar surface. Mean thickness values were determined by means of ellipsometry and AFM as a function of polymer concentration in solutions prepared either in acetone or in ethyl acetate (EA), both are good solvents for the cellulose esters. The results were discussed in the light of solvent evaporation rate and interaction energy between substrate and solvent. The effects of annealing and type of cellulose ester on film thickness, film morphology, surface roughness and surface wettability were also investigated.