998 resultados para TF-DNA specificity
Resumo:
Small molecules that specifically bind with high affinity to any designated DNA sequence in the human genome would be useful tools in molecular biology and potentially in human medicine. Simple rules have been developed to rationally alter the sequence specificity of minor groove-binding polyamides containing N-methylimidazole and N-methylpyrrole amino acids. Crescent-shaped polyamides bind as antiparallel dimers with each polyamide making specific contacts with each strand on the floor of the minor groove. Cyclic polyamides have now been synthesized that bind designated DNA sequences at subnanomolar concentrations.
Resumo:
A DNA-binding factor with high affinity and specificity for the [Leu5]enkephalin-encoding sequences in the prodynorphin and proenkephalin genes has been characterized. The factor has the highest affinity for the [Leu5]-enkephalin-encoding sequence in the dynorphin B-encoding region of the prodynorphin gene, has relatively high affinity for other [Leu5]enkephalin-encoding sequences in the prodynorphin and proenkephalin genes, but has no apparent affinity for similar DNA sequences coding for [Met5]-enkephalin in the prodynorphin or proopiomelanocortin genes. The factor has been named [Leu5]enkephalin-encoding sequence DNA-binding factor (LEF). LEF has a nuclear localization and is composed of three subunits of about 60, 70, and 95 kDa, respectively. The highest levels were observed in rat testis, cerebellum, and spleen and were generally higher in late embryonal compared to newborn or adult animals. LEF activity was also recorded in human clonal tumor cell lines. LEF inhibited the transcription of reporter genes in artificial gene constructs where a [Leu5]enkephalin-encoding DNA fragment had been inserted between the transcription initiation site and the coding region of the reporter genes. These observations suggest that the [Leu5]enkephalin-encoding sequences in the prodynorphin and proenkephalin genes also have regulatory functions realized through interaction with a specific DNA-binding factor.
Resumo:
The TATA box sequence in eukaryotes is located about 25 bp upstream of many genes transcribed by RNA polymerase II (Pol II) and some genes transcribed by RNA polymerase III (Pol III). The TATA box is recognized in a sequence-specific manner by the TATA box-binding protein (TBP), an essential factor involved in the initiation of transcription by all three eukaryotic RNA polymerases. We have investigated the recognition of the TATA box by the Pol II and Pol III basal transcription machinery and its role in establishing the RNA polymerase specificity of the promoter. Artificial templates were constructed that contained a canonical TATA box as the sole promoter element but differed in the orientation of the 8-bp TATA box sequence. As expected, Pol II initiated transcription in unfractionated nuclear extracts downstream of the "forward" TATA box. In distinct contrast, transcription that initiated downstream of the "reverse" TATA box was carried out specifically by Pol III. Importantly, this effect was observed regardless of the source of the DNA either upstream or downstream of the TATA sequence. These findings suggest that TBP may bind in opposite orientations on Pol II and Pol III promoters and that opposite, yet homologous, surfaces of TBP may be utilized by the Pol II and Pol III basal machinery for the initiation of transcription.
Resumo:
The challenge of the Human Genome Project is to increase the rate of DNA sequence acquisition by two orders of magnitude to complete sequencing of the human genome by the year 2000. The present work describes a rapid detection method using a two-dimensional optical wave guide that allows measurement of real-time binding or melting of a light-scattering label on a DNA array. A particulate label on the target DNA acts as a light-scattering source when illuminated by the evanescent wave of the wave guide and only the label bound to the surface generates a signal. Imaging/visual examination of the scattered light permits interrogation of the entire array simultaneously. Hybridization specificity is equivalent to that obtained with a conventional system using autoradiography. Wave guide melting curves are consistent with those obtained in the liquid phase and single-base discrimination is facile. Dilution experiments showed an apparent lower limit of detection at 0.4 nM oligonucleotide. This performance is comparable to the best currently known fluorescence-based systems. In addition, wave guide detection allows manipulation of hybridization stringency during detection and thereby reduces DNA chip complexity. It is anticipated that this methodology will provide a powerful tool for diagnostic applications that require rapid cost-effective detection of variations from known sequences.
Resumo:
Replacement of the phosphodiester linkages of the polyanion DNA with guanidine linkers provides the polycation deoxynucleic guanidine (DNG). The synthesis of pentameric thymidyl DNA is provided. This polycationic DNG species binds with unprecedented affinity and with base-pair specificity to negatively charged poly(dA) to provide both double and triple helices. The dramatic stability of these hybrid structures is shown by their denaturation temperatures (Tm). For example, the double helix of the pentameric thymidyl DNG and poly(dA) does not dissociate in boiling water (ionic strength = 0.12), whereas the Tm for pentameric thymidyl DNA associated with poly(dA) is approximately 13 degrees C (ionic strength = 0.12). The effect of ionic strength on Tm for DNG complexes with DNA shows an opposite correlation compared with double-stranded DNA and is much more dramatic than for double-stranded DNA.
Resumo:
B-lymphocyte-specific class switch recombination is known to occur between pairs of 2- to 10-kb switch regions located immediately upstream of the immunoglobulin constant heavy-chain genes. Others have shown that the recombination is temporally correlated with the induction of transcription at the targeted switch regions. To determine whether this temporal correlation is due to a mechanistic linkage, we have developed an extrachromosomal recombination assay that closely recapitulates DNA deletional class switch recombination. In this assay, the rate of recombination is measured between 24 and 48 hr posttransfection. We find that recombinants are generated in a switch sequence-dependent manner. Recombination occurs with a predominance within B-cell lines representative of the mature B-cell stage and within a subset of pre-B-cell lines. Transcription stimulates the switch sequence-dependent recombination. Importantly, transcription activates recombination only when directed in the physiologic orientation but has no effect when directed in the nonphysiologic orientation.
Resumo:
The murine p53 protein contains two nucleic acid-binding sites, a sequence-specific DNA-binding region localized between amino acid residues 102-290 and a nucleic acid-binding site without sequence specificity that has been localized to residues 364-390. Alternative splicing of mRNA generates two forms of this p53 protein. The normal, or majority, splice form (NSp53) retains its carboxyl-terminal sequence-nonspecific nucleic acid-binding site, which can negatively regulate the sequence-specific DNA-binding site. The alternative splice form of p53 (ASp53) replaces amino acid residues 364-390 with 17 different amino acids. This protein fails to bind nucleic acids nonspecifically and is constitutive for sequence-specific DNA binding. Thus, the binding of nucleic acids at the carboxyl terminus regulates sequence-specific DNA binding by p53. The implications of these findings for the activation of p53 transcriptional activity following DNA damage are discussed.
Resumo:
A 17-amino acid arginine-rich peptide from the bovine immunodeficiency virus Tat protein has been shown to bind with high affinity and specificity to bovine immunodeficiency virus transactivation response element (TAR) RNA, making contacts in the RNA major groove near a bulge. We show that, as in other peptide-RNA complexes, arginine and threonine side chains make important contributions to binding but, unexpectedly, that one isoleucine and three glycine residues also are critical. The isoleucine side chain may intercalate into a hydrophobic pocket in the RNA. Glycine residues may allow the peptide to bind deeply within the RNA major groove and may help determine the conformation of the peptide. Similar features have been observed in protein-DNA and drug-DNA complexes in the DNA minor groove, including hydrophobic interactions and binding deep within the groove, suggesting that the major groove of RNA and minor groove of DNA may share some common recognition features.
Resumo:
Recombinant antibodies capable of sequence-specific interactions with nucleic acids represent a class of DNA- and RNA-binding proteins with potential for broad application in basic research and medicine. We describe the rational design of a DNA-binding antibody, Fab-Ebox, by replacing a variable segment of the immunoglobulin heavy chain with a 17-amino acid domain derived from TFEB, a class B basic helix-loop-helix protein. DNA-binding activity was studied by electrophoretic mobility-shift assays in which Fab-Ebox was shown to form a specific complex with DNA containing the TFEB recognition motif (CACGTG). Similarities were found in the abilities of TFEB and Fab-Ebox to discriminate between oligodeoxyribonucleotides containing altered recognition sequences. Comparable interference of binding by methylation of cytosine residues indicated that Fab-Ebox and TFEB both contact DNA through interactions along the major groove of double-stranded DNA. The results of this study indicate that DNA-binding antibodies of high specificity can be developed by using the modular nature of both immunoglobulins and transcription factors.
Resumo:
Natural genes and proteins often contain tandemly repeated sequence motifs that dramatically increase physiological specificity and activity. Given the selective value of such repeats, it is likely that several different mechanisms have been responsible for their generation. One mechanism that has been shown to generate relatively long tandem repeats (in the kilobase range) is rolling circle replication. In this communication, we demonstrate that rolling circle synthesis in a simple enzymatic system can produce tandem repeats of monomers as short as 34 bp. In addition to suggesting possible origins for natural tandem repeats, these observations provide a facile means for constructing libraries of repeated motifs for use in "in vitro evolution" experiments designed to select molecules with defined biological or chemical properties.
Resumo:
The cleavage specificity of the Pvu II and BamHI restriction endonucleases is found to be dramatically reduced at elevated osmotic pressure. Relaxation in specificity of these otherwise highly accurate and specific enzymes, previously termed "star activity," is uniquely correlated with osmotic pressure between 0 and 100 atmospheres. No other colligative solvent property exhibits a uniform correlation with star activity for all of the compounds tested. Application of hydrostatic pressure counteracts the effects of osmotic pressure and restores the natural selectivity of the enzymes for their canonical recognition sequences. These results indicate that water solvation plays an important role in the site-specific recognition of DNA by many restriction enzymes. Osmotic pressure did not induce an analogous effect on the specificity of the EcoRV endonuclease, implying that selective hydration effects do not participate in DNA recognition in this system. Hydrostatic pressure was found to have little effect on the star activity induced by changes in ionic strength, pH, or divalent cation, suggesting that distinct mechanisms may exist for these observed alterations in specificity. Recent evidence has indicated that BamHI and EcoRI share similar structural motifs, while Pvu II and EcoRV belong to a different structural family. Evidently, the use of hydration water to assist in site-specific recognition is a motif neither limited to nor defined by structural families.
Resumo:
To elucidate the mechanism of recognition of double-stranded DNA (dsDNA) by homopyrimidine polyamide ("peptide") nucleic acid (PNA) leading to the strand-displacement, the kinetics of the sequence-specific PNA/DNA binding have been studied. The binding was monitored with time by the gel retardation and nuclease S1 cleavage assays. The experimental kinetic curves obey pseudo-first-order kinetics and the dependence of the pseudo-first-order rate constant, kps, on PNA concentration, P, obeys a power law kps approximately P gamma with 2 < gamma < 3. The kps values for binding of decamer PNA to dsDNA target sites with one mismatch are hundreds of times slower than for the correct site. A detailed kinetic scheme for PNA/DNA binding is proposed that includes two major steps of the reaction of strand invasion: (i) a transient partial opening of the PNA binding site on dsDNA and incorporation of one PNA molecule with the formation of an intermediate PNA/DNA duplex and (ii) formation of a very stable PNA2/DNA triplex. A simple theoretical treatment of the proposed kinetic scheme is performed. The interpretation of our experimental data in the framework of the proposed kinetic scheme leads to the following conclusions. The sequence specificity of the recognition is essentially provided at the "search" step of the process, which consists in the highly reversible transient formation of duplex between one PNA molecule and the complementary strand of duplex DNA while the other DNA strand is displaced. This search step is followed by virtually irreversible "locking" step via PNA2/DNA triplex formation. The proposed mechanism explains how the binding of homopyrimidine PNA to dsDNA meets two apparently mutually contradictory features: high sequence specificity of binding and remarkable stability of both correct and mismatched PNA/DNA complexes.
Resumo:
In vertebrate species, the innate immune system down-regulates protein translation in response to viral infection through the action of the double-stranded RNA (dsRNA)-activated protein kinase (PKR). In some teleost species another protein kinase, Z-DNA-dependent protein kinase (PKZ), plays a similar role but instead of dsRNA binding domains, PKZ has Zα domains. These domains recognize the left-handed conformer of dsDNA and dsRNA known as Z-DNA/Z-RNA. Cyprinid herpesvirus 3 infects common and koi carp, which have PKZ, and encodes the ORF112 protein that itself bears a Zα domain, a putative competitive inhibitor of PKZ. Here we present the crystal structure of ORF112-Zα in complex with an 18-bp CpG DNA repeat, at 1.5 Å. We demonstrate that the bound DNA is in the left-handed conformation and identify key interactions for the specificity of ORF112. Localization of ORF112 protein in stress granules induced in Cyprinid herpesvirus 3-infected fish cells suggests a functional behavior similar to that of Zα domains of the interferon-regulated, nucleic acid surveillance proteins ADAR1 and DAI.
Resumo:
The large number of protein kinases makes it impractical to determine their specificities and substrates experimentally. Using the available crystal structures, molecular modeling, and sequence analyses of kinases and substrates, we developed a set of rules governing the binding of a heptapeptide substrate motif (surrounding the phosphorylation site) to the kinase and implemented these rules in a web-interfaced program for automated prediction of optimal substrate peptides, taking only the amino acid sequence of a protein kinase as input. We show the utility of the method by analyzing yeast cell cycle control and DNA damage checkpoint pathways. Our method is the only available predictive method generally applicable for identifying possible substrate proteins for protein serine/threonine kinases and helps in silico construction of signaling pathways. The accuracy of prediction is comparable to the accuracy of data from systematic large-scale experimental approaches.
Resumo:
Purpose: Latent Epstein-Barr virus (EBV) genomes are found in the malignant cells of approximately one-third of Hodgkin's lymphoma (HL) cases. Detection and quantitation of EBV viral DNA could potentially be used as a biomarker of disease activity. Experimental Design: Initially, EBV-DNA viral load was prospectively monitored from peripheral blood mononuclear cells (PBMC) in patients with HL. Subsequently, we analyzed viral load in plasma from a second cohort of patients. A total of 58 patients with HL (31 newly diagnosed, 6 relapsed, and 21 in long-term remission) were tested. Using real-time PCR, 43 PBMC and 52 plasma samples were analyzed. Results: EBV-DNA was detectable in the plasma of all EBV-positive patients with HL prior to therapy. However, viral DNA was undetectable following therapy in responding patients (P = 0.0156), EBV-positive HL patients in long-term remission (P = 0.0011), and in all patients with EBV-negative HL (P = 0.0238). Conversely, there was no association seen for the EBV-DNA load measured from PBMC in patients with active EBV-positive HL patients as compared with EBV-negative HL, or patients in long-term remission. EBV-DNA load in matched plasma/PBMC samples were not correlated. Conclusions: We show that free plasma EBV-DNA has excellent sensitivity and specificity, and can be used as a noninvasive biomarker for EBV-positive HL and that serial monitoring could predict response to therapy. Additional prospective studies are required to further evaluate the use of free plasma EBV-DNA as a biomarker for monitoring response to treatment in patients with EBV-positive HL.