980 resultados para Systematic errors


Relevância:

60.00% 60.00%

Publicador:

Resumo:

A tenet of modern radiotherapy (RT) is to identify the treatment target accurately, following which the high-dose treatment volume may be expanded into the surrounding tissues in order to create the clinical and planning target volumes. Respiratory motion can induce errors in target volume delineation and dose delivery in radiation therapy for thoracic and abdominal cancers. Historically, radiotherapy treatment planning in the thoracic and abdominal regions has used 2D or 3D images acquired under uncoached free-breathing conditions, irrespective of whether the target tumor is moving or not. Once the gross target volume has been delineated, standard margins are commonly added in order to account for motion. However, the generic margins do not usually take the target motion trajectory into consideration. That may lead to under- or over-estimate motion with subsequent risk of missing the target during treatment or irradiating excessive normal tissue. That introduces systematic errors into treatment planning and delivery. In clinical practice, four-dimensional (4D) imaging has been popular in For RT motion management. It provides temporal information about tumor and organ at risk motion, and it permits patient-specific treatment planning. The most common contemporary imaging technique for identifying tumor motion is 4D computed tomography (4D-CT). However, CT has poor soft tissue contrast and it induce ionizing radiation hazard. In the last decade, 4D magnetic resonance imaging (4D-MRI) has become an emerging tool to image respiratory motion, especially in the abdomen, because of the superior soft-tissue contrast. Recently, several 4D-MRI techniques have been proposed, including prospective and retrospective approaches. Nevertheless, 4D-MRI techniques are faced with several challenges: 1) suboptimal and inconsistent tumor contrast with large inter-patient variation; 2) relatively low temporal-spatial resolution; 3) it lacks a reliable respiratory surrogate. In this research work, novel 4D-MRI techniques applying MRI weightings that was not used in existing 4D-MRI techniques, including T2/T1-weighted, T2-weighted and Diffusion-weighted MRI were investigated. A result-driven phase retrospective sorting method was proposed, and it was applied to image space as well as k-space of MR imaging. Novel image-based respiratory surrogates were developed, improved and evaluated.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In the last two decades, the field of homogeneous gold catalysis has been

extremely active, growing at a rapid pace. Another rapidly-growing field—that of

computational chemistry—has often been applied to the investigation of various gold-

catalyzed reaction mechanisms. Unfortunately, a number of recent mechanistic studies

have utilized computational methods that have been shown to be inappropriate and

inaccurate in their description of gold chemistry. This work presents an overview of

available computational methods with a focus on the approximations and limitations

inherent in each, and offers a review of experimentally-characterized gold(I) complexes

and proposed mechanisms as compared with their computationally-modeled

counterparts. No aim is made to identify a “recommended” computational method for

investigations of gold catalysis; rather, discrepancies between experimentally and

computationally obtained values are highlighted, and the systematic errors between

different computational methods are discussed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Global Network for the Molecular Surveillance of Tuberculosis 2010: A. Miranda (Tuberculosis Laboratory of the National Institute of Health, Porto, Portugal)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A comparison of the Rietveld quantitative phase analyses (RQPA) obtained using Cu-Kα1, Mo-Kα1, and synchrotron strictly monochromatic radiations is presented. The main aim is to test a simple hypothesis: high energy Mo-radiation, combined with high resolution laboratory X-ray powder diffraction optics, could yield more accurate RQPA, for challenging samples, than well-established Cu-radiation procedure(s). In order to do so, three set of mixtures with increasing amounts of a given phase (spiking-method) were prepared and the corresponding RQPA results have been evaluated. Firstly, a series of crystalline inorganic phase mixtures with increasing amounts of an analyte was studied in order to determine if Mo-Kα1 methodology is as robust as the well-established Cu-Kα1 one. Secondly, a series of crystalline organic phase mixtures with increasing amounts of an organic compound was analyzed. This type of mixture can result in transparency problems in reflection and inhomogeneous loading in narrow capillaries for transmission studies. Finally, a third series with variable amorphous content was studied. Limit of detection in Cu-patterns, ~0.2 wt%, are slightly lower than those derived from Mo-patterns, ~0.3 wt%, for similar recording times and limit of quantification for a well crystallized inorganic phase using laboratory powder diffraction was established ~0.10 wt%. However, the accuracy was comprised as relative errors were ~100%. Contents higher than 1.0 wt% yielded analyses with relative errors lower than 20%. From the obtained results it is inferred that RQPA from Mo-Kα1 radiation have slightly better accuracies than those obtained from Cu-Kα1. This behavior has been established with the calibration graphics obtained through the spiking method and also from Kullback-Leibler distance statistic studies. We explain this outcome, in spite of the lower diffraction power for Mo-radiation (compared to Cu-radiation), due to the larger volume tested with Mo, also because higher energy minimize pattern systematic errors and the microabsorption effect.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Increasing in resolution of numerical weather prediction models has allowed more and more realistic forecasts of atmospheric parameters. Due to the growing variability into predicted fields the traditional verification methods are not always able to describe the model ability because they are based on a grid-point-by-grid-point matching between observation and prediction. Recently, new spatial verification methods have been developed with the aim of show the benefit associated to the high resolution forecast. Nested in among of the MesoVICT international project, the initially aim of this work is to compare the newly tecniques remarking advantages and disadvantages. First of all, the MesoVICT basic examples, represented by synthetic precipitation fields, have been examined. Giving an error evaluation in terms of structure, amplitude and localization of the precipitation fields, the SAL method has been studied more thoroughly respect to the others approaches with its implementation in the core cases of the project. The verification procedure has concerned precipitation fields over central Europe: comparisons between the forecasts performed by the 00z COSMO-2 model and the VERA (Vienna Enhanced Resolution Analysis) have been done. The study of these cases has shown some weaknesses of the methodology examined; in particular has been highlighted the presence of a correlation between the optimal domain size and the extention of the precipitation systems. In order to increase ability of SAL, a subdivision of the original domain in three subdomains has been done and the method has been applied again. Some limits have been found in cases in which at least one of the two domains does not show precipitation. The overall results for the subdomains have been summarized on scatter plots. With the aim to identify systematic errors of the model the variability of the three parameters has been studied for each subdomain.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this study, we carried out a comparative analysis between two classical methodologies to prospect residue contacts in proteins: the traditional cutoff dependent (CD) approach and cutoff free Delaunay tessellation (DT). In addition, two alternative coarse-grained forms to represent residues were tested: using alpha carbon (CA) and side chain geometric center (GC). A database was built, comprising three top classes: all alpha, all beta, and alpha/beta. We found that the cutoff value? at about 7.0 A emerges as an important distance parameter.? Up to 7.0 A, CD and DT properties are unified, which implies that at this distance all contacts are complete and legitimate (not occluded). We also have shown that DT has an intrinsic missing edges problem when mapping the first layer of neighbors. In proteins, it may produce systematic errors affecting mainly the contact network in beta chains with CA. The almost-Delaunay (AD) approach has been proposed to solve this DT problem. We found that even AD may not be an advantageous solution. As a consequence, in the strict range up ? to 7.0 A, the CD approach revealed to be a simpler, more complete, and reliable technique than DT or AD. Finally, we have shown that coarse-grained residue representations may introduce bias in the analysis of neighbors in cutoffs up to ? 6.8 A, with CA favoring alpha proteins and GC favoring beta proteins. This provides an additional argument pointing to ? the value of 7.0 A as an important lower bound cutoff to be used in contact analysis of proteins.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

There remains large disagreement between ice-water path (IWP) in observational data sets, largely because the sensors observe different parts of the ice particle size distribution. A detailed comparison of retrieved IWP from satellite observations in the Tropics (!30 " latitude) in 2007 was made using collocated measurements. The radio detection and ranging(radar)/light detection and ranging (lidar) (DARDAR) IWP data set, based on combined radar/lidar measurements, is used as a reference because it provides arguably the best estimate of the total column IWP. For each data set, usable IWP dynamic ranges are inferred from this comparison. IWP retrievals based on solar reflectance measurements, in the moderate resolution imaging spectroradiometer (MODIS), advanced very high resolution radiometer–based Climate Monitoring Satellite Applications Facility (CMSAF), and Pathfinder Atmospheres-Extended (PATMOS-x) datasets, were found to be correlated with DARDAR over a large IWP range (~20–7000 g m -2 ). The random errors of the collocated data sets have a close to lognormal distribution, and the combined random error of MODIS and DARDAR is less than a factor of 2, which also sets the upper limit for MODIS alone. In the same way, the upper limit for the random error of all considered data sets is determined. Data sets based on passive microwave measurements, microwave surface and precipitation products system (MSPPS), microwave integrated retrieval system (MiRS), and collocated microwave only (CMO), are largely correlated with DARDAR for IWP values larger than approximately 700 g m -2 . The combined uncertainty between these data sets and DARDAR in this range is slightly less MODIS-DARDAR, but the systematic bias is nearly an order of magnitude.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Whether the use of mobile phones is a risk factor for brain tumors in adolescents is currently being studied. Case--control studies investigating this possible relationship are prone to recall error and selection bias. We assessed the potential impact of random and systematic recall error and selection bias on odds ratios (ORs) by performing simulations based on real data from an ongoing case--control study of mobile phones and brain tumor risk in children and adolescents (CEFALO study). Simulations were conducted for two mobile phone exposure categories: regular and heavy use. Our choice of levels of recall error was guided by a validation study that compared objective network operator data with the self-reported amount of mobile phone use in CEFALO. In our validation study, cases overestimated their number of calls by 9% on average and controls by 34%. Cases also overestimated their duration of calls by 52% on average and controls by 163%. The participation rates in CEFALO were 83% for cases and 71% for controls. In a variety of scenarios, the combined impact of recall error and selection bias on the estimated ORs was complex. These simulations are useful for the interpretation of previous case-control studies on brain tumor and mobile phone use in adults as well as for the interpretation of future studies on adolescents.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Studies of memory-guided saccades in monkeys show an upward bias, while studies of antisaccades in humans show a diagonal effect, a deviation of endpoints toward the 45° diagonal. To determine if these two different spatial biases are specific to different types of saccades, we studied prosaccades, antisaccades and memory-guided saccades in humans. The diagonal effect occurred not with prosaccades but with antisaccades and memory-guided saccades with long intervals, consistent with hypotheses that it originates in computations of goal location under conditions of uncertainty. There was a small upward bias for memory-guided saccades but not prosaccades or antisaccades. Thus this bias is not a general effect of target uncertainty but a property specific to memory-guided saccades.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Errors in the administration of medication represent a significant loss of medical resources and pose life altering or life threatening risks to patients. This paper considered the question, what impact do Computerized Physician Order Entry (CPOE) systems have on medication errors in the hospital inpatient environment? Previous reviews have examined evidence of the impact of CPOE on medication errors, but have come to ambiguous conclusions as to the impact of CPOE and decision support systems (DSS). Forty-three papers were identified. Thirty-one demonstrated a significant reduction in prescribing error rates for all or some drug types; decreases in minor errors were most often reported. Several studies reported increases in the rate of duplicate orders and failures to remove contraindicated drugs, often attributed to inappropriate design or to an inability to operate the system properly. The evidence on the effectiveness of CPOE to reduce errors in medication administration is compelling though it is limited by modest study sample sizes and designs. ^

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Methods: It has been estimated that medication error harms 1-2% of patients admitted to general hospitals. There has been no previous systematic review of the incidence, cause or type of medication error in mental healthcare services. Methods: A systematic literature search for studies that examined the incidence or cause of medication error in one or more stage(s) of the medication-management process in the setting of a community or hospital-based mental healthcare service was undertaken. The results in the context of the design of the study and the denominator used were examined. Results: All studies examined medication management processes, as opposed to outcomes. The reported rate of error was highest in studies that retrospectively examined drug charts, intermediate in those that relied on reporting by pharmacists to identify error and lowest in those that relied on organisational incident reporting systems. Only a few of the errors identified by the studies caused actual harm, mostly because they were detected and remedial action was taken before the patient received the drug. The focus of the research was on inpatients and prescriptions dispensed by mental health pharmacists. Conclusion: Research about medication error in mental healthcare is limited. In particular, very little is known about the incidence of error in non-hospital settings or about the harm caused by it. Evidence is available from other sources that a substantial number of adverse drug events are caused by psychotropic drugs. Some of these are preventable and might probably, therefore, be due to medication error. On the basis of this and features of the organisation of mental healthcare that might predispose to medication error, priorities for future research are suggested.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

There are a number of gel dosimeter calibration methods in contemporary usage. The present study is a detailed Monte Carlo investigation into the accuracy of several calibration techniques. Results show that for most arrangements the dose to gel accurately reflects the dose to water, with the most accurate method involving the use of a large diameter flask of gel into which multiple small fields of varying dose are directed. The least accurate method was found to be that of a long test tube in a water phantom, coaxial with the beam. The large flask method is also the most straightforward and least likely to introduce errors during setup, though, to its detriment, the volume of gel required is much more than other methods.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Studies of molecular evolutionary rates have yielded a wide range of rate estimates for various genes and taxa. Recent studies based on population-level and pedigree data have produced remarkably high estimates of mutation rate, which strongly contrast with substitution rates inferred in phylogenetic (species-level) studies. Using Bayesian analysis with a relaxed-clock model, we estimated rates for three groups of mitochondrial data: avian protein-coding genes, primate protein-coding genes, and primate d-loop sequences. In all three cases, we found a measurable transition between the high, short-term (<1–2 Myr) mutation rate and the low, long-term substitution rate. The relationship between the age of the calibration and the rate of change can be described by a vertically translated exponential decay curve, which may be used for correcting molecular date estimates. The phylogenetic substitution rates in mitochondria are approximately 0.5% per million years for avian protein-coding sequences and 1.5% per million years for primate protein-coding and d-loop sequences. Further analyses showed that purifying selection offers the most convincing explanation for the observed relationship between the estimated rate and the depth of the calibration. We rule out the possibility that it is a spurious result arising from sequence errors, and find it unlikely that the apparent decline in rates over time is caused by mutational saturation. Using a rate curve estimated from the d-loop data, several dates for last common ancestors were calculated: modern humans and Neandertals (354 ka; 222–705 ka), Neandertals (108 ka; 70–156 ka), and modern humans (76 ka; 47–110 ka). If the rate curve for a particular taxonomic group can be accurately estimated, it can be a useful tool for correcting divergence date estimates by taking the rate decay into account. Our results show that it is invalid to extrapolate molecular rates of change across different evolutionary timescales, which has important consequences for studies of populations, domestication, conservation genetics, and human evolution.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Crime analysts have traditionally received little guidance from academic researchers in key tasks in the analysis process, specifically the testing of multiple hypotheses and evaluating evidence in a scientific fashion. This article attempts to fill this gap by outlining a method (the Analysis of Competing Hypotheses) of systematically analysing multiple explanations for crime problems. The method is systematic, avoids many cognitive errors common in analysis, and is explicit. It is argued that the implementation of this approach makes analytic products audit-able, the reasoning underpinning them transparent, and provides intelligence managers a rational professional development tool for individual analysts.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have compared the spectral aerosol optical depth (AOD) and aerosol fine mode fraction (AFMF) derived from Moderate Resolution Imaging Spectroradiometer (MODIS) with those of Aerosol Robotic Network (AERONET) at Kanpur (26.45N, 80.35E), northern India for the pre-monsoon season (March to June, 2001-2005). We found that MODIS systematically overestimates AOD during pre-monsoon season (known to be influenced by dust transport from north-west of India). The errors in AOD were correlated with the MODIS top-of-atmosphere apparent surface reflectance in 2.1 mu m channel (rho*(2.1)). MODIS aerosol algorithm uses p*(2.1) to derive the surface reflectance in visible channels (rho(0.47), rho(0.66)) using an empirical mid IR-visible correlation (rho(0.47) = rho(2.1)/4, rho(0.66) = rho(2.1)/2). The large uncertainty in estimating surface reflectance in visible channels (Delta rho(0.66)+/- 0.04, Delta rho(0.47)+/- 0.02) at higher values of p*(2.1) (p*(2.1) > 0.18) leads to higher aerosol contribution in the total reflected radiance at top-of atmosphere to compensate for the reduced surface reflectance in visible channels and thus leads to overestimation of AOD. This was also reflected in the very low values of AFMF during pre-monsoon whose accuracy depends on the aerosol path radiance in 0.47 and 0.66 mu m channels and aerosol models. The errors in AOD were also high in the scattering angle range 110 degrees-140 degrees, where the effect of dust non-spherity on its optical properties is significant. The direct measurements of spectral surface reflectance are required over the Indo-Gangetic basin in order to validate the mid IR-visible relationship. MODIS aerosol models should also be modified to incorporate the effect of non-spherity of dust aerosols.