967 resultados para Sustainable infrastructure assets
Resumo:
In urban environments road traffic volumes are increasing and the density of living is becoming higher. As a consequence the urban community is being exposed to increasing levels of road traffic noise. It is also evident that the noise reduction potential of within-the-road-reserve treatments such as noise barriers, mounding and pavement surfacing has been exhausted. This paper presents a strategy that involves the comparison of noise ameliorative treatments both within and outside the road reserve. The noise reduction resulting from the within-the-road-reserve component of treatments has been evaluated using a leading application of the CoRTN Model, developed by the UK Department of Transport 1988 [1], and the outside road reserve treatment has been evaluated in accordance with the Australian Standard 3671, Acoustics – Road traffic noise intrusion – Building sitting and construction [5]. The evaluation of noise treatments has been undertaken using a decision support tool (DST) currently being developed under the research program conducted at RMIT University and Department of Main Roads, Queensland. The case study has been based on data from a real project in Queensland, Australia. The research described here was carried out by the Australian Cooperative Research Centre for Construction Innovation [9], in collaboration with Department of Main Roads, Queensland, Department of Public Works, Queensland, Arup Pty. Ltd., Queensland University of technology and RMIT University.
Resumo:
Properly designed decision support environments encourage proactive and objective decision making. The work presented in this paper inquires into developing a decision support environment and a tool to facilitate objective decision making in dealing with road traffic noise. The decision support methodology incorporates traffic amelioration strategies both within and outside the road reserve. The project is funded by the CRC for Construction Innovation and conducted jointly by the RMIT University and the Queensland Department of Main Roads (MR) in collaboration with the Queensland Department of Public Works, Arup Pty Ltd., and the Queensland University of Technology. In this paper, the proposed decision support framework is presented in the way of a flowchart which enabled the development of the decision support tool (DST). The underpinning concept is to establish and retain an information warehouse for each critical road segment (noise corridor) for a given planning horizon. It is understood that, in current practice, some components of the approach described are already in place but not fully integrated and supported. It provides an integrated user-friendly interface between traffic noise modeling software, noise management criteria and cost databases.
Resumo:
Community awareness and the perception on the traffic noise related health impacts have increased significantly over the last decade resulting in a large volume of public inquiries flowing to Road Authorities for planning advice. Traffic noise management in the urban environment is therefore becoming a “social obligation”, essentially due to noise related health concerns. Although various aspects of urban noise pollution and mitigation have been researched independently, an integrated approach by stakeholders has not been attempted. Although the current treatment and mitigation strategies are predominantly handled by the Road Agencies, a concerted effort by all stakeholders is becoming mandatory for effective and tangible outcomes in the future. A research project is underway a RMIT University, Australia, led by the second author to consider the use of “hedonic pricing” for alternative noise amelioration treatments within the road reserve and outside the road reserve. The project aims to foster a full range noise abatement strategy encompassing source, path and noise receiver. The benefit of such a study would be to mitigate the problem where it is most effective and would defuse traditional “authority” boundaries to produce the optimum outcome. The project is conducted in collaboration with the Department of Main Roads Queensland, Australia and funded by the CRC for Construction Innovation. As part of this study, a comprehensive literature search is currently underway to investigate the advancements in community health research, related to environmental noise pollution, and the advancements in technical and engineering research in mitigating the issue. This paper presents the outcomes of this work outlining state of the art, national and international good practices and gap analysis to identify major anomalies and developments.
Resumo:
The road and transport industry in Australia and overseas has come a long way to understanding the impact of road traffic noise on the urban environment. Most road authorities now have guidelines to help assess and manage the impact of road traffic noise on noise-sensitive areas and development. While several economic studies across Australia and overseas have tried to value the impact of noise on property prices, decision-makers investing in road traffic noise management strategies have relatively limited historic data and case studies to go on. The perceived success of a noise management strategy currently relies largely on community expectations at a given time, and is not necessarily based on the analysis of the costs and benefits, or the long-term viability and value to the community of the proposed treatment options. With changing trends in urban design, it is essential that the 'whole-of-life' costs and benefits of noise ameliorative treatment options and strategies be identified and made available for decisionmakers in future investment considerations. For this reason, CRC for Construction Innovation Australia funded a research project, Noise Management in Urban Environments to help decision-makers with future road traffic noise management investment decisions. RMIT University and the Queensland Department of Main Roads (QDMR) have conducted the research work, in collaboration with the Queensland Department of Public Works, ARUP Pty Ltd, and the Queensland University of Technology. The research has formed the basis for the development of a decision-support software tool, and helped collate technical and costing data for known noise amelioration treatment options. We intend that the decision support software tool (DST) should help an investment decision-maker to be better informed of suitable noise ameliorative treatment options on a project-by-project basis and identify likely costs and benefits associated with each of those options. This handbook has been prepared as a procedural guide for conducting a comparative assessment of noise ameliorative options. The handbook outlines the methodology and assumptions adopted in the decision-support framework for the investment decision-maker and user of the DST. The DST has been developed to provide an integrated user-friendly interface between road traffic noise modelling software, the relevant assessment criteria and the options analysis process. A user guide for the DST is incorporated in this handbook.
Resumo:
Most buildings constructed in Australia must comply with the Building Code of Australia (BCA). Checking for compliance against the BCA is a major task for both designers and building surveyors. This project carries out a prototype research using the EDM Model Checker and the SMC Model Checker for automated design checking against the Building Codes of Australia for use in professional practice. In this project, we develop a means of encoding design requirements and domain specific knowledge for building codes and investigate the flexibility of building models to contain design information. After assessing two implementations of EDM and SMC that check compliance against deemed-to-satisfy provision of building codes relevant to access by people with disabilities, an approach to automated code checking using a shared object-oriented database is established. This project can be applied in other potential areas – including checking a building design for non-compliance of many types of design requirements. Recommendations for future development and use in other potential areas in construction industries are discussed.
Resumo:
This was a two-stage project to inform the Australian property and construction industry generally, and to provide the Australian Building Codes Board (ABCB) with information to allow it to determine whether or not sustainability requirements are necessary in the Future Building Code of Australia (BCA21). Research objectives included: examine overseas sustainability requirements for buildings and outline the reason why it is controlled and regulated in the particular country, state, principality etc. examine studies focusing on sustainability developments in buildings in Australia and overseas identify potential issues and implications associated with sustainable building requirements provide advice on whether provisions are necessary in the BCA21 to make buildings sustainable if the study determines there is a need for sustainability requirements in the BCA21, the study was to demonstrate the need to control and regulate along with the method to control and regulate. This research was broken down into two stages. Stage 1 was a literature review of international requirements as well as current thinking and practice for sustainable building developments. Stage 2 identified issues and implications of sustainability requirements for buildings and advice on whether provisions are necessary in the BCA21. This stage included workshops in all capital cities and involved key stakeholders, such as regulators, local government and representatives from key associations. This final report brings together the work of both stages, along with a searchable internet database of references and a series of nine key recommendations.
Resumo:
Australias civil infrastructure assets of roads, bridges, railways, buildings and other structures are worth billions of dollars. To effectively manage road infrastructures, road agencies firstly need to optimise the expenditure for data collection whilst not jeopardising the reliability in using the optimised data to predict maintenance and rehabilitation costs. Secondly, road agencies need to accurately predict the deterioration rates of infrastructures to reflect local conditions so that the budget estimates can be accurately calculated. Finally, the prediction of budgets for maintenance and rehabilitation must be reasonably reliable.
Resumo:
This paper provides an overview of a new framework for a design stage Building Environmental Assessment (BEA) tool and a discussion of strategic responses to existing tool issues and relative stakeholder requirements that lead to the development of this tool founded on new information and communication technology (ICT) related to developments in 3D CAD technology. After introducing the context of the BEA and some of their team’s new work the authors • Critique current BEA tool theory; • Review previous assessments of stakeholder needs; • Introduce a new framework applied to analyse such tools • Highlight and key results considering illustrative ICT capabilities and • Discuss their potential significance upon BEA tool stakeholders.
Resumo:
Australia has no nationally accepted building products life cycle inventory (LCI) database for use in building Ecologically Sustainable Development (ESD) assessment (BEA) tools. More information about the sustainability of the supply chain is limited by industry’s lack of real capacity to deliver objective information on process and product environmental impact. Recognition of these deficits emerged during compilation of a National LCI database to inform LCADesign, a prototype 3 dimensional object oriented computer aided design (3-D CAD) commercial building design tool. Development of this Australian LCI represents 24 staff years of effort here since 1995. Further development of LCADesign extensions is proposed as being essential to support key applications demanded from a more holistic theoretical framework calling for modules of new building and construction industry tools. A proposed tool, conceptually called LCADetails, is to serve the building product industries own needs as well as that of commercial building design amongst other industries’ prospective needs. In this paper, a proposition is examined that the existing national LCI database should be further expanded to serve Australian building product industries’ needs as well as to provide details for its client-base from a web based portal containing a module of practical supply and procurement applications. Along with improved supply chain assessment services, this proposed portal is envisaged to facilitate industry environmental life cycle improvement assessment and support decision-making to provide accredited data for operational reporting capabilities, load-based reasoning as well as BEA applications. This paper provides an overview of developments to date, including a novel 3-D CAD information and communications technology (ICT) platform for more holistic integration of existing tools for true cost assessment. Further conceptualisation of future prospects, based on a new holistic life cycle assessment framework LCADevelop, considering stakeholder relationships and their need for a range of complementary tools leveraging automated function off such ICT platforms to inform dimensionally defined operations for such as automotive, civil, transport and industrial applications are also explored.
Resumo:
Manufacture, construction and use of buildings and building materials make a significant environmental impact internally (inside the building), locally (neighbourhood) and globally. Life cycle assessment (LCA) methodology is being applied for evaluating the environmental impact of building/or building materials. One of the major applications of LCA is to identify key issues of a product system from cradle to grave. Key issues identified in an LCA lead one to the right direction in assessing the environmental aspects of a product system and help to identify the areas for improvement of the environmental performance of a product as well. The purpose of this paper is to suggest two methods for identifying key issues using an integrated tool (LCADesign), which has been developed to provide a method of determining the best alternative for reducing environmental impacts from a building or building materials, and compare both methods in the case study. This paper assists the designers or marketers related to building or building materials in their decision making by giving information on activities or alternatives which are identified as key issues for environmental impacts.
Resumo:
The ability to assess a commercial building for its impact on the environment at the earliest stage of design is a goal which is achievable by integrating several approaches into a single procedure directly from the 3D CAD representation. Such an approach enables building design professionals to make informed decisions on the environmental impact of building and its alternatives during the design development stage instead of at the post-design stage where options become limited. The indicators of interest are those which relate to consumption of resources and energy, contributions to pollution of air, water and soil, and impacts on the health and wellbeing of people in the built environment as a result of constructing and operating buildings. 3D object-oriented CAD files contain a wealth of building information which can be interrogated for details required for analysis of the performance of a design. The quantities of all components in the building can be automatically obtained from the 3D CAD objects and their constituent materials identified to calculate a complete list of the amounts of all building products such as concrete, steel, timber, plastic etc. When this information is combined with a life cycle inventory database, key internationally recognised environmental indicators can be estimated. Such a fully integrated tool known as LCADesign has been created for automated ecoefficiency assessment of commercial buildings direct from 3D CAD. This paper outlines the key features of LCADesign and its application to environmental assessment of commercial buildings.
Resumo:
Buildings consume resources and energy, contribute to pollution of our air, water and soil, impact the health and well-being of populations and constitute an important part of the built environment in which we live. The ability to assess their design with a view to reducing that impact automatically from their 3D CAD representations enables building design professionals to make informed decisions on the environmental impact of building structures. Contemporary 3D object-oriented CAD files contain a wealth of building information. LCADesign has been designed as a fully integrated approach for automated eco-efficiency assessment of commercial buildings direct from 3D CAD. LCADesign accesses the 3D CAD detail through Industry Foundation Classes (IFCs) - the international standard file format for defining architectural and constructional CAD graphic data as 3D real-world objects - to permit construction professionals to interrogate these intelligent drawing objects for analysis of the performance of a design. The automated take-off provides quantities of all building components whose specific production processes, logistics and raw material inputs, where necessary, are identified to calculate a complete list of quantities for all products such as concrete, steel, timber, plastic etc and combines this information with the life cycle inventory database, to estimate key internationally recognised environmental indicators such as CML, EPS and Eco-indicator 99. This paper outlines the key modules of LCADesign and their role in delivering an automated eco-efficiency assessment for commercial buildings.
Resumo:
This paper discusses challenges to developers of a national Life Cycle Inventory (LCI) database on which to base assessment of building environmental impacts and a key to development of a fully integrated eco-design tool created for automated eco-efficiency assessment of commercial building design direct from 3D CAD. The scope of this database includes Australian and overseas processing burdens involved in acquiring, processing, transporting, fabricating, finishing and using metals, masonry, timber, glazing, ceramics, plastics, fittings, composites and coatings. Burdens are classified, calculated and reported for all flows of raw materials, fuels, energy and emissions to and from the air, soil and water associated with typical products and services in building construction, fitout and operation. The aggregated life cycle inventory data provides the capacity to generate environmental impact assessment reports based on accepted performance indicators. Practitioners can identify hot spots showing high environmental burdens of a proposed design and drill down to report on specific building components. They can compare assessments with case studies and operational estimates to assist in eco-efficient design of a building, fitout and operation.
Resumo:
Understanding the differences between the temporal and physical aspects of the building life cycle is an essential ingredient in the development of Building Environmental Assessment (BEA) tools. This paper illustrates a theoretical Life Cycle Assessment (LCA) framework aligning temporal decision-making with that of material flows over building development phases. It was derived during development of a prototype commercial building design tool that was based on a 3-D CAD information and communications technology (ICT) platform and LCA software. The framework aligns stakeholder BEA needs and the decision-making process against characteristics of leading green building tools. The paper explores related integration of BEA tool development applications on such ICT platforms. Key framework modules are depicted and practical examples for BEA are provided for: • Definition of investment and service goals at project initiation; • Design integrated to avoid overlaps/confusion over the project life cycle; • Detailing the supply chain considering building life cycle impacts; • Delivery of quality metrics for occupancy post-construction/handover; • Deconstruction profiling at end of life to facilitate recovery.
Resumo:
LCADesign software package is a real-time environmental impact calculator for commercial property that works directly from the building designer's model. It enables developers, building designers, architects, engineers, builders, manufacturers and government bodies to optimise the eco-impact of a building as the design model evolves instead of waiting months for expert analysis. By integrating with the Building Information Models (BIMs) generated by 3D computer-aided drafting, LCADesign builds eco-efficiency into the design stage and measures the environmental values and risks of materials in commercial buildings