941 resultados para Surface and interfaces
Resumo:
This research examines the relationship between perceived group diversity and group conflict, and the moderating role of team context. Currentiy, diversity research predominantly focuses on surface and job-related dimensions, largely to the neglect of deep-level diversity (in terms of values, attitude and beliefs). First, this research hjfpothesised that all three dimensions of diversity would be positively related to group conflict, with deep-level diversity the strongest predictor of task. conflict. Second, it was hypothesised that team context would moderate the relationship between deep-level diversity and group conflict. Team context refers to the extent to which the work performed (1) has high consequences (in terms of health and well being for team members and others); (2) is relatively isolating, (3) requires a high reliance upon team members; (4) is volatile; and (5) interpersonal attraction and mutual helpfulness is essential. Two studies were conducted. The first study employed 44 part-time employees across a range of occupations, and the second study employed 66 full-time employees from a mining company in Australia. A series of hierarchical multiple regressions and moderated multiple regressions confirmed both hypotheses. Practical implications and future research directions are discussed.
Resumo:
While diversity might give an organization a competitive advantage, individuals have a tendency to prefer homogenous group settings. Prior research suggests that group members who are dissimilar (vs. similar) to their peers in terms of a given diversity attribute (e.g. demographics, attitudes, values or traits) feel less attached to their work group, experience less satisfying and more conflicted relationships with their colleagues, and consequently are less effective. However, prior empirical findings tend to be weak and inconsistent, and it remains unclear when, how and to what extent such differences affect group members’ social integration (i.e. attachment with their work group, satisfaction and conflicted relationships with their peers) and effectiveness. To address these issues the current study conducted a meta-analysis and integrated the empirical results of 129 studies. For demographic diversity attributes (such as gender, ethnicity, race, nationality, age, functional background, and tenure) the findings support the idea that demographic dissimilarity undermines individual member performance via lower levels of social integration. These negative effects were more pronounced in pseudo teams – i.e. work groups in which group members pursue individual goals, work on individual tasks, and are rewarded for their individual performance. These negative effects were however non-existent in real teams - i.e. work groups in which groups members pursue group goals, work on interdependent tasks, and are rewarded (at least partially) based on their work group’s performance. In contrast, for underlying psychological diversity attributes (such as attitudes, personality, and values), the relationship between dissimilarity and social integration was more negative in real teams than in pseudo teams, which in return translated into even lower individual performance. At the same time however, differences in underlying psychological attributes had an even stronger positive effect on dissimilar group member’s individual performance, when the negative effects of social integration were controlled for. This implies that managers should implement real work groups to overcome the negative effects of group member’s demographic dissimilarity. To harness the positive effects of group members’ dissimilarity on underlying psychological attributes, they need to make sure that dissimilar group members become socially integrated.
Resumo:
Several of OPC paste and concrete specimens, with different mix proportions, were cast against CPF and impermeable formwork (IF) and the profiles of pore structure, microhardness and scratch hardness of the cover zone were established. The chloride ingress and the depth of carbonation of the surface zone of concrete cast against CPF and IF were investigated. The main mechanisms controlling the ECR processes and the factors affecting such treatment were critically reviewed. Subsequently, as a means of restoring passivation of steel embedded in carbonated concrete, such HCP specimens were subjected to ECR. The influence of ECR on the chemistry of the pore solution and the microstructure of the surface and the steel/cement past interface zones were also studied. The main findings of this investigation were as follows: (a) The thickness of the microstructure gradient of cover concrete is significantly decreased with increasing period of water curing but is relatively unaffected by curing temperature, w/e ratio and the use of cement replacement materials. (b) The scratch hardness technique was shown to be potentially useful for characterising the microstructure and microhardness gradients of the surface zone. (c) A relationship between the microstructure gradient and mass transport properties of the surface zone was established. (d) The use of CPF resulted in a significant reduction in porosity of both the cement paste matrix and the aggregate/cement paste transition zone, and a marked improvement in the resistance of the surface zone to carbonation and the ingress of chloride ions. (e) The ECR treatment resulted in a marked densification of the pore structure and in changes to the pore solution chemistry and the cement phases of near-surface and steel/cement paste transition zones. This effect was more pronounced with current density, period of treatment and particularly with the use of sodium phosphate as an electrolyte.
Resumo:
Prior research linking demographic (e.g., age, ethnicity/race, gender, and tenure) and underlying psychological (e.g., personality, attitudes, and values) dissimilarity variables to individual group member's work-related outcomes produced mixed and contradictory results. To account for these findings, this study develops a contingency framework and tests it using meta-analytic and structural equation modelling techniques. In line with this framework, results showed different effects of surface-level (i.e., demographic) dissimilarity and deep-level (i.e., underlying psychological) dissimilarity on social integration, and ultimately on individual effectiveness related outcomes (i.e., turnover, task, and contextual performance). Specifically, surface-level dissimilarity had a negative effect on social integration under low but not under high team interdependence. In return, social integration fully mediated the negative relationship between surface-level dissimilarity and individual effectiveness related outcomes under low interdependence. In contrast, deep-level dissimilarity had a negative effect on social integration, which was stronger under high and weaker under low team interdependence. Contrary to our predictions, social integration did not mediate the negative relationship between deep-level dissimilarity and individual effectiveness related outcomes but suppressed positive direct effects of deep-level dissimilarity on individual effectiveness related outcomes. Possible explanations for these counterintuitive findings are discussed. © 2011 The British Psychological Society.
Resumo:
Interfaces are studied in an inhomogeneous critical state where boundary pinning is compensated with a ramped force. Sandpiles driven off the self-organized critical point provide an example of this ensemble in the Edwards-Wilkinson (EW) model of kinetic roughening. A crossover from quenched to thermal noise violates spatial and temporal translational invariances. The bulk temporal correlation functions have the effective exponents β1D∼0.88±0.03 and β2D∼0.52±0.05, while at the boundaries βb,1D/2D∼0.47±0.05. The bulk β1D is shown to be reproduced in a randomly kicked thermal EW model.
Resumo:
Interfaces are studied in an inhomogeneous critical state where boundary pinning is compensated with a ramped force. Sandpiles driven off the self-organized critical point provide an example of this ensemble in the Edwards-Wilkinson (EW) model of kinetic roughening. A crossover from quenched to thermal noise violates spatial and temporal translational invariances. The bulk temporal correlation functions have the effective exponents β1D∼0.88±0.03 and β2D∼0.52±0.05, while at the boundaries βb,1D/2D∼0.47±0.05. The bulk β1D is shown to be reproduced in a randomly kicked thermal EW model.
Resumo:
The nature of subsurface cracks formed under and around Vickers hardness indentations is often assumed rather than identified. Subsurface cracks in four engineering ceramics are revealed using a penetrant technique, and flaw dimensions are recorded. The resulting data are used to investigate several aspects of indentation cracking, such as crack shape, functional relationships between indentation load and flaw dimensions, and the performance of indentation fracture toughness equations. An R curve is constructed for each of the materials. © 1995 The Institute of Materials.
Resumo:
An integrated surface-subsurface hydrological model of Everglades National Park (ENP) was developed using MIKE SHE and MIKE 11 modeling software. The model has a resolution of 400 meters, covers approximately 1050 square miles of ENP, includes 110 miles of drainage canals with a variety of hydraulic structures, and processes hydrological information, such as evapotranspiration, precipitation, groundwater levels, canal discharges and levels, and operational schedules. Calibration was based on time series and probability of exceedance for water levels and discharges in the years 1987 through 1997. Model verification was then completed for the period of 1998 through 2005. Parameter sensitivity in uncertainty analysis showed that the model was most sensitive to the hydraulic conductivity of the regional Surficial Aquifer System, the Manning's roughness coefficient, and the leakage coefficient, which defines the canal-subsurface interaction. The model offers an enhanced predictive capability, compared to other models currently available, to simulate the flow regime in ENP and to forecast the impact of topography, water flows, and modifying operation schedules.
Resumo:
This dataset contains the collection of available published paired Uk'37 and Tex86 records spanning multi-millennial to multi-million year time scales, as well as a collection of Mg/Ca-derived temperatures measured in parallel on surface and subsurface dwelling foraminifera, both used in the analyses of Ho and Laepple, Nature Geoscience 2016. As the signal-to-noise ratios of proxy-derived Holocene temperatures are relatively low, we selected records that contain at least the last deglaciation (oldest sample >18kyr BP).
Resumo:
This study subdivides the Weddell Sea, Antarctica, into seafloor regions using multivariate statistical methods. These regions are categories used for comparing, contrasting and quantifying biogeochemical processes and biodiversity between ocean regions geographically but also regions under development within the scope of global change. The division obtained is characterized by the dominating components and interpreted in terms of ruling environmental conditions. The analysis uses 28 environmental variables for the sea surface, 25 variables for the seabed and 9 variables for the analysis between surface and bottom variables. The data were taken during the years 1983-2013. Some data were interpolated. The statistical errors of several interpolation methods (e.g. IDW, Indicator, Ordinary and Co-Kriging) with changing settings have been compared for the identification of the most reasonable method. The multivariate mathematical procedures used are regionalized classification via k means cluster analysis, canonical-correlation analysis and multidimensional scaling. Canonical-correlation analysis identifies the influencing factors in the different parts of the cove. Several methods for the identification of the optimum number of clusters have been tested. For the seabed 8 and 12 clusters were identified as reasonable numbers for clustering the Weddell Sea. For the sea surface the numbers 8 and 13 and for the top/bottom analysis 8 and 3 were identified, respectively. Additionally, the results of 20 clusters are presented for the three alternatives offering the first small scale environmental regionalization of the Weddell Sea. Especially the results of 12 clusters identify marine-influenced regions which can be clearly separated from those determined by the geological catchment area and the ones dominated by river discharge.
Resumo:
Paleostudies of the Indonesian Throughflow (ITF) are largely based on temperature and salinity reconstructions of its near surface component, whereas the variability of its lower thermocline flow has rarely been investigated. We present a multi-proxy record of planktonic and benthic foraminiferal d18O, Mg/Ca-derived surface and lower thermocline temperatures, X-ray fluorescence (XRF)-derived runoff and sediment winnowing for the past 130 ka in marine sediment core SO18471. Core SO18471, retrieved from a water depth of 485 m at the southern edge of the Timor Strait close to the Sahul Shelf, sits in a strategic position to reconstruct variations in both the ITF surface and lower thermocline flow as well as to investigate hydrological changes related to monsoon variability and shelf dynamics over time. Sediment winnowing demonstrates that the ITF thermocline flow intensified during MIS 5d-a and MIS 1. In contrast during MIS 5e, winnowing was reduced and terrigenous input increased suggesting intensification of the local wet monsoon and a weaker ITF. Lower thermocline warming during globally cold periods (MIS 4 - MIS 2) appears to be related to a weaker and contracted thermocline ITF and advection of warm and salty Indian Ocean waters.
Resumo:
We have assessed the reliability of several foraminifer-hosted proxies of the ocean carbonate system (d11B, B/Ca, and U/Ca) using Holocene samples from the Atlantic and Pacific oceans. We examined chemical variability over a range of test sizes for two surface-dwelling foraminifers (Globigerinoides sacculifer and Globigerinoides ruber). Measurements of d11B in G. ruber show no significant relationship with test size in either Atlantic or Pacific sites and appear to provide a robust proxy of surface seawater pH. Likewise there is no significant variability in the d11B of our Atlantic core top G. sacculifer, but we find that d11B increases with increasing test size for G. sacculifer in the Pacific. These systematic differences in d11B are inferred to be a consequence of isotopically light gametogenic calcite in G. sacculifer and its preferential preservation during postdepositional dissolution. The trace element ratio proxies of ocean carbonate equilibria, U/Ca and B/Ca, show systematic increases in both G. ruber and G. sacculifer with increasing test size, possibly as a result of changing growth rates. This behavior complicates their use in paleoceanographic reconstructions. In keeping with several previous studies we find that Mg/Ca ratios increase with increasing size fraction in our well-preserved Atlantic G. sacculifer but not in G. ruber. In contrast to previous interpretations we suggest that these observations reflect a proportionally larger influence of compositionally distinct gametogenic calcite in small individuals compared to larger ones. As with d11B this influences G. sacculifer but not G. ruber, which has negligible gametogenic calcite.
Resumo:
Abstract not available