970 resultados para Sulfuric acid solutions
Resumo:
This paper describes in detail a technique employed to grow quasi-spherical single crystals of noble metals for electrochemical applications, using platinum as an example. The metal beads were formed by melting the extremity of a wire in an oxygen / butane flame. X-ray techniques were used to check the crystallization and to determine the orientation of the crystals. Treatment with a pure hydrogen flame followed by a cooling procedure in a hydrogen / argon atmosphere were used for conditioning the well-defined platinum single crystal surfaces. Finally, electrochemical characterization of the Pt(111), Pt(110) and Pt(100) surfaces was done in diluted sulfuric acid solution in the hydrogen adsorption / desorption potential region.
Resumo:
A low cost spectrophotometric cell for use in flow analysis was manufactured in acrylic and adapted to a commercial spectrophotometer. The application of this cell was performed in the determination of chromium (VI) in steel samples using the reaction with the alkaloid brucine in presence of oxalic acid and 0.6 mol L-1 sulfuric acid. The cell allows an enlarged analytical range, diminishing the extension of dilutions, which is useful for on-line monitoring of industrial processes.
Resumo:
The aim of this paper was to compare methods of moisture determination to choose the best one for the determination of this parameter in royal jelly samples. Royal jelly is sensitive to high temperatures becoming dark and loosing volatiles in high temperatures. The methods were: vacuum oven at 60 ºC, 70 ºC, conventional oven at 105 ºC, Karl Fisher, dissecator with sulfuric acid and dryness with infrared light at 105 ºC. Based on the results, the best method was the dissecator with sulfuric acid for moisture determination in royal jelly.
Resumo:
The use of factorial design was evaluated for optimization of focused-microwave-assisted digestion of bean samples. Calcium, Fe, Mg, Mn and Zn percentual recoveries were determined in digestates after focused-microwave-assisted digestion according to factorial design procedures. A cavity microwave digestion was carried out to certify the elemental compositions obtained. The accuracy was checked using a standard reference material, the NIST SRM 8433 - Corn Bran. Results are in agreement with certified values at the 95% confidence limit when the Student t-test was used. Volumes of nitric and sulfuric acid, temperature, and the interplay between HNO3 and H2SO4 initial volumes were significant variables according to P-values in the analysis of variance (ANOVA).
Resumo:
This work presents two recycling processes for spent Li/MnO2 batteries. After removal of the solvent under vacuum the cathode + anode + electrolyte was submitted to one of the following procedures: (a) it was calcined (500 ºC, 5 h) and the calcined solid was submitted to solvent extraction with water in order to recover lithium salts. The residual solid was treated with sulfuric acid containing hydrogen peroxide. Manganese was recovered as sulfate; (b) the solid was treated with potassium hydrogeno sulfate (500 ºC, 5 h). The solid was dissolved in water and the resulting solution was added dropwise to sodium hydroxide. Manganese was recovered as dioxide. The residual solution was treated with potassium fluoride in order to precipitate lithium fluoride.
Resumo:
The "active mass" (cathode + anode + electrolyte) of spent Li-ion batteries was submitted to one of the following procedures: (a) it was calcined (500 ºC) and submitted to extraction with water to recover lithium salts. The residual solid was treated with sulfuric acid containing hydrogen peroxide. Cobalt was recovered as sulfate; (b) the "active mass" was treated with potassium hydrogen sulfate (500 ºC) and dissolved in water. Cobalt was precipitated together with copper after addition of sodium hydroxide. Lithium was partially recovered as lithium fluoride. Co-processing of other battery components (aluminum and copper foils) affected negatively the behavior of the recovery procedures. Previous segregation of battery components is essential for an efficient and economical processing of the "active mass".
Resumo:
Liquid-liquid extraction is a mass transfer process for recovering the desired components from the liquid streams by contacting it to non-soluble liquid solvent. Literature part of this thesis deals with theory of the liquid-liquid extraction and the main steps of the extraction process design. The experimental part of this thesis investigates the extraction of organic acids from aqueous solution. The aim was to find the optimal solvent for recovering the organic acids from aqueous solutions. The other objective was to test the selected solvent in pilot scale with packed column and compare the effectiveness of the structured and the random packing, the effect of dispersed phase selection and the effect of packing material wettability properties. Experiments showed that selected solvent works well with dilute organic acid solutions. The random packing proved to be more efficient than the structured packing due to higher hold-up of the dispersed phase. Dispersing the phase that is present in larger volume proved to more efficient. With the random packing the material that was wetted by the dispersed phase was more efficient due to higher hold-up of the dispersed phase. According the literature, the behavior is usually opposite.
Resumo:
The composite membranes prepared via incorporation of 12.5% of molecular sieves 3A, 4A, 5A and 13X into chitosan/poly(vinyl alcohol) (1:1). The composite membranes were immersed in the cross-linker sulfuric acid in order to acquire high proton conductivity for applications in electrolytes in PEMCF and DMF. The influence of the molecular sieves on the structural, optical, thermal, mechanical, morphologic and protonic conductivity properties and water/methanol swelling degree of membranes were investigated.
Resumo:
The decomposition of detergent powder samples in a microwave oven and autoclave was evaluated. To establish the best experimental conditions a 2(5) factorial design was performed, varying the conditions in autoclave and microwave digestion and flow system parameters for the determination of phosphorus. The best composition was: 0.2 mL sulfuric acid; 500 W power and a 2 min time interval; 6 mmol L-1 of ascorbic acid and 16 mmol L-1 of molybdate to flow system. This factor levels use less reagents than the reference method. No statistically significant differences were found between the autoclave and microwave oven responses at the 95% confidence level.
Resumo:
This work describes a three-step pre-treatment route for processing spent commercial NiMo/Al2O3 catalysts. Extraction of soluble coke with n-hexane and/or leaching of foulant elements with oxalic acid were performed before burning insoluble coke under air. Oxidized catalysts were leached with 9 mol L-1 sulfuric acid. Iron was the only foulant element partially leached by oxalic acid. The amount of insoluble matter in sulfuric acid was drastically reduced when iron and/or soluble coke were previously removed. Losses of active phase metals (Ni, Mo) during leaching with oxalic acid were compensated by the increase of their recovery in the sulfuric acid leachate.
Resumo:
Acetylation was performed to reduce the polarity of wood and increase its compatibility with polymer matrices for the production of composites. These reactions were performed first as a function of acetic acid and anhydride concentration in a mixture catalyzed by sulfuric acid. A concentration of 50%/50% (v/v) of acetic acid and anhydride was found to produced the highest conversion rate between the functional groups. After these reactions, the kinetics were investigated by varying times and temperatures using a 3² factorial design, and showed time was the most relevant parameter in determining the conversion of hydroxyl into carbonyl groups.
Resumo:
A simple and reliable voltammetric method is presented for the determination of amitriptyline using a boron-doped diamond electrode in 0.1 mol L-1 sulfuric acid solution as the support electrolyte. Under optimized differential pulse voltammetry conditions (modulation time 5 ms, scan rate 70 mV s-1, and pulse amplitude 120 mV), the electrode provides linear responses to amitriptyline in the concentration range 1.05 to 92.60 µmol L-1 and at a detection limit of 0.52 µmol L-1. The proposed method was successfully applied in pharmaceutical formulations, with results similar to those obtained using UV-vis spectrophotometric method as reference (at 95% confidence level), as recommended by the Brazilian Pharmacopoeia.
Resumo:
A simple procedure is described for the determination of scopolamine by square-wave voltammetry using a cathodically pretreated boron-doped diamond electrode. Cyclic voltammetry studies indicate that the oxidation of scopolamine is irreversible at a peak potential of 1.59 V (vs. Ag/AgCl (3.0 mol L-1 KCl)) in a 0.50 mol L-1 sulfuric acid solution. Under optimized conditions, the analytical curve obtained was linear (r = 0.9996) for the scopolamine concentration range of 1.0 to 110 µmol L-1, with a detection limit of 0.84 µmol L-1. The method was successfully applied to the determination of scopolamine in pharmaceutical formulations with minimum sample preparation.
Resumo:
The present study investigated the carboxylation of silver nanoparticles (AgNPs) by 1:3 nitric acid-sulfuric acid mixtures for immobilizing Aspergillus oryzae β-galactosidase. Carboxylated AgNPs retained 93% enzyme upon immobilization and the enzyme did not leach out appreciably from the modified nanosupport in the presence of 100 mmol L-1 NaCl. Atomic force micrograph revealed the binding of β-galactosidase on the modified AgNPs. The optimal pH for soluble and carboxylated AgNPs adsorbed β-galactosidase (IβG) was observed at pH 4.5 while the optimal operating temperature was broadened from 50 ºC to 60 ºC for IβG. Michaelis constant, Km was increased two and a half fold for IβG while Vmax decreases slightly as compared to soluble enzyme. β-galactosidase immobilized on surface functionalized AgNPs retained 70% biocatalytic activity even at 4% galactose concentration as compared to enzyme in solution. Our study showed that IβG produces greater amount of galacto-oligosaccharides at higher temperatures (50 ºC and 60 ºC) from 0.1 mol L-1 lactose solution at pH 4.5 as compared to previous reports.
Resumo:
Bacterial cellulose produced from Gluconacetobacter xilinus was used to produce cellulose nanocrystals by sulfuric acid hydrolysis. Hydrolysis was performed with 64% sulfuric acid at 50 ºC with the hydrolysis time ranging between 5 and 90 min. The production of nanocrystals was observed to have size distributions that were dependent on hydrolysis times up to 10 min, after which time the suspensions showed distributions closer in size. Results from thermal analysis and X-ray diffraction showed that the amorphous cellulose was removed, leaving only the crystalline portion. Self-supported films were formed from the suspension of nanocrystals and had iridescence characteristics. The films were characterized by microscopy measures and specular reflectance.