907 resultados para Subunit Messenger-rnas


Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

N6-({Delta}2-Isopentenyl) adenosine antibodies were used for the isolation of free cytokinins and cytokinin-containing tRNAs from parts of Cucumis sativus L. var. Guntur seedlings and for the estimation of cytokinins in them. Immobilized N6-({Delta}2-isopentenyl) adenosine antibodies retained tRNAs containing N6-({Delta}2-isopentenyl) adenosine and N6-(4-hydroxy-3-methylbut-2-enyl) adenosine with equal efficiencies. There were at least five cytokinins in the free form in cucumber seedlings. N6-(4-Hydroxy-3-methylbut-2-enyl) adenosine, N6-({Delta}2-isopentenyl) adenosine, and N6-({Delta}2-isopentenyl) adenine were present at least to the extent of 80, 23, and 9 nanograms, respectively, in the cotyledons and 40, 6, and 3 nanograms, respectively, in the decotyledonated seedlings per gram of tissue. Only two cytokinins were found in the tRNAs of cucumber cotyledons, namely N6-({Delta}2-isopentenyl) adenosine and N6-(4-hydroxy-3-methylbut-2-enyl) adenosine in amounts of 12 and 318 nanograms, respectively, per gram of tissue. Immunoaffinity chromatographic analysis of radiolabeled aminoacyl tRNAs from cucumber cotyledons showed that tRNAPhe and tRNATyr contained cytokinins whereas tRNAAla did not.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Previous microarray analyses identified 22 microRNAs (miRNAs) differentially expressed in paired ectopic and eutopic endometrium of women with and without endometriosis. To investigate further the role of these miRNAs in women with endometriosis, we conducted an association study aiming to explore the relationship between endometriosis risk and single-nucleotide polymorphisms (SNPs) in miRNA target sites for these differentially expressed miRNAs. A panel of 102 SNPs in the predicted miRNA binding sites were evaluated for an endometriosis association study and an ingenuity pathway analysis was performed. Fourteen rare variants were identified in this study. We found SNP rs14647 in the Wolf-Hirschhorn syndrome candidate gene1 (WHSC1) 3'UTR (untranslated region) was associated with endometriosis-related infertility presenting an odds ratio of 12.2 (95% confidence interval = 2.4-60.7, P = 9.03 x 10(-5)). SNP haplotype AGG in the solute carrier family 22, member 23 (SLC22A23) 3'UTR was associated with endometriosis-related infertility and more severe disease. With the individual genotyping data, ingenuity pathways analysis identified the tumour necrosis factor and cyclin-dependant kinase inhibitor as major factors in the molecular pathways. Significant associations between WHSC1 alleles and endometriosis-related infertility and SLC22A23 haplotypes and the disease severe stage were identified. These findings may help focus future research on subphenotypes of this disease. Replication studies in independent large sample sets to confirm and characterize the involvement of the gene variation in the pathogenesis of endometriosis are needed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

-Essential hypertensives display enhanced signal transduction through pertussis toxin-sensitive G proteins. The T allele of a C825T variant in exon 10 of the G protein beta3 subunit gene (GNB3) induces formation of a splice variant (Gbeta3-s) with enhanced activity. The T allele of GNB3 was shown recently to be associated with hypertension in unselected German patients (frequency=0.31 versus 0.25 in control). To confirm and extend this finding in a different setting, we performed an association study in Australian white hypertensives. This involved an extensively examined cohort of 110 hypertensives, each of whom were the offspring of 2 hypertensive parents, and 189 normotensives whose parents were both normotensive beyond age 50 years. Genotyping was performed by polymerase chain reaction and digestion with BseDI, which either cut (C allele) or did not cut (T allele) the 268-bp polymerase chain reaction product. T allele frequency in the hypertensive group was 0.43 compared with 0.25 in the normotensive group (chi2=22; P=0.00002; odds ratio=2.3; 95% CI=1.7 to 3.3). The T allele tracked with higher pretreatment blood pressure: diastolic=105+/-7, 109+/-16, and 128+/-28 mm Hg (mean+/-SD) for CC, CT, and TT, respectively (P=0.001 by 1-way ANOVA). Blood pressures were higher in female hypertensives with a T allele (P=0.006 for systolic and 0.0003 for diastolic by ANOVA) than they were in male hypertensives. In conclusion, the present study of a group with strong family history supports a role for a genetically determined, physiologically active splice variant of the G protein beta3 subunit gene in the causation of essential hypertension.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The antitumour protein from the α-endotoxin of Bacillus thuringiensis var. thuringiensis has been purified, crystallized and partially characterized. The same protein also shows the insecticidal activity. According to amino acid analysis it is an acidic protein with a molecular weight of approx. 13 000.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The antitumour protein from the α-endotoxin of Bacillus thuringiensis var. thuringiensis has been purified, crystallized and partially characterized. The same protein also shows the insecticidal activity. According to amino acid analysis it is an acidic protein with a molecular weight of approx. 13 000.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

35S-Labeled thionucleosides prepared from Escherichia coli and Pseudomonas aeruginosa tRNAs were chromatographed separately on a phosphocellulose column with a linear salt gradient of 0.005–0.1 M ammonium formate (pH 3.9). The thionucleosides of E. coli tRNA were quantitatively separated into four peaks which were identified using authentic samples as 4-thiouridine (78 %), 2-methylthio-N6-isopentenyladenosine (8 %), 2-thiocytidine (2.5 %) and 5-methylaminomethyl-2-thiouridine (11.5 %). In the case of P. aeruginosa tRNA four radioactive thionucleoside peaks were also observed. One major difference was the almost complete absence of 2-methylthio-N6-isopentenyladenosine and the presence of a new peak of radioactivity in the nucleosides of P. aeruginosa. The relative proportions of the various thionucleosides were found to be different in E. coli and P. aeruginosa tRNAs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Digital image

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Phenylalanine ammonia-lyase (EC 4.3.1.5) was purified to homogeneity from the acetone-dried powders of the mycelial felts of the plant pathogenic fungus Rhizoctonia solani. 2. A useful modification in protamine sulphate treatment to get substantial purification of the enzyme in a single-step is described. 3. The purified enzyme shows bisubstrate activity towards L-phenylalanine and L-tyrosine. 4. It is sensitive to carbonyl reagents and the inhibition is not reversed by gel filtration. 5. The molecular weight of the enzyme as determined by Sephadex G-200 chromatography and sucrose-density-gradient centrifugation is around 330000. 6. The enzyme is made up of two pairs of unidentical subunits, with a molecular weight of 70000 (alpha) and 90000 (beta) respectively. 7. Studies on initial velocity versus substrate concentration have shown significant deviations from Michaelis-Menten kinetics. 8. The double-reciprocal plots are biphasic (concave downwards) and Hofstee plots show a curvilinear pattern. 9. The apparent Km value increases from 0.18 mM to as high as 5.0 mM with the increase in the concentration of the substrate and during this process the Vmax, increases by 2-2.5-fold. 10. The value of Hill coefficient is 0.5. 11. Steady-state rates of phenylalanine ammonia-lyase reaction in the presence of inhibitors like D-phenylalanine, cinnamic, p-coumaric, caffeic, dihydrocaffeic and phenylpyruvic acid have shown that only one molecule of each type of inhibitor binds to a molecule of the enzyme. These observations suggest the involvement of negative homotropic interactions in phenylalanine ammonia-lyase. 12. The enzyme could not be desensitized by treatment with HgCl2, p-chloromercuribenzoic acid or by repeated freezing and thawing.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Obtaining pure mRNA preparations from prokaryotes has been difficult, if not impossible, for want of a poly(A) tail on these messages, We have used poly(A) polymerase from yeast to effect specific polyadenylation of Escherichia coli polysomal mRNA in the presence of magnesium and manganese, The polyadenylated total mRNA, which could be subsequently purified by binding to and elution from oligo(dT) beads, had a size range of 0.4-4.0 kb. We have used hybridization to a specific plasmid-encoded gene to further confirm that the polyadenylated species represented mRNA, Withdrawal of Mg2+ from the polyadenylation reaction rRNA despite the presence of Mn2+, indicating the vital role of Mg2+ in maintaining the native structure of polysomes, Complete dissociation of polysomes into ribosomal subunits resulted in quantitative polyadenylation of both 16S and 23S rRNA species, Chromosomal lacZ gene-derived messages were quantitatively recovered in the oligo(dT)-bound fraction, as demonstrated by RT-PCR analysis, Potential advantages that accrue from the availability of pure total mRNA from prokaryotes is discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In an attempt to unravel the role of conserved histidine residues in the structure-function of sheep liver cytosolic serine hydroxymethyltransferase (SHMT), three site-specific mutants (H134N, H147N, and H150N) were constructed and expressed, H134N and H147N SHMTs had K-m values for L-serine, L-allo-threonine and beta-phenylserine similar to that of wild type enzyme, although the k(cat) values were markedly decreased, H134N SHMT was obtained in a dimeric form with only 6% of bound pyridoxal 5'-phosphate (PLP) compared with the wild type enzyme, Increasing concentrations of PLP (up to 500 mu M) enhanced the enzyme activity without changing its oligomeric structure, indicating that His-134 may be involved in dimer-dimer interactions, H147N SHMT was obtained in a tetrameric form but with very little PLP (3%) bound to it, suggesting that this residue was probably involved in cofactor binding, Unlike the wild type enzyme, the cofactor could be easily removed by dialysis from H147N SHMT, and the apoenzyme thus formed was present predominantly in the dimeric form, indicating that PLP binding is at the dimer-dimer interface, H150N SHMT was obtained in a tetrameric form with bound PLP, However, the mutant had very little enzyme activity (<2%). The k(cat)/K-m values for L-serine, L-allo-threonine and beta-phenylserine were 80-, 56-, and SS-fold less compared with wild type enzyme, Unlike the wild type enzyme, it failed to form the characteristic quinonoid intermediate and was unable to carry out the exchange of 2-S proton from glycine in the presence of H-4-folate. However, it could form an external aldimine with serine and glycine, The wild type and the mutant enzyme had similar K-d values for serine and glycine, These results suggest that His-150 may be the base that abstracts the alpha-proton of the substrate, leading to formation of the quinonoid intermediate in the reaction catalyzed by SHMT.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In an attempt to identify the arginine residue involved in binding of the carboxylate group of serine to mammalian serine hydroxymethyltransferase, a highly conserved Arg-401 was mutated to Ala by site-directed mutagenesis. The mutant enzyme had a characteristic visible absorbance at 425 nm indicative of the presence of bound pyridoxal 5'-phosphate as an internal aldimine with a lysine residue. However, it had only 0.003% of the catalytic activity of the wild-type enzyme. It was also unable to perform reactions with glycine, beta-phenylserine or d-alanine, suggesting that the binding of these substrates to the mutant enzyme was affected. This was also evident from the interaction of amino-oxyacetic acid, which was very slow (8.4x10(-4) s-1 at 50 microM) for the R401A mutant enzyme compared with the wild-type enzyme (44.6 s-1 at 50 microM). In contrast, methoxyamine (which lacks the carboxy group) reacted with the mutant enzyme (1.72 s-1 at 250 microM) more rapidly than the wild-type enzyme (0.2 s-1 at 250 microM). Further, both wild-type and the mutant enzymes were capable of forming unique quinonoid intermediates absorbing at 440 and 464 nm on interaction with thiosemicarbazide, which also does not have a carboxy group. These results implicate Arg-401 in the binding of the substrate carboxy group. In addition, gel-filtration profiles of the apoenzyme and the reconstituted holoenzyme of R401A and the wild-type enzyme showed that the mutant enzyme remained in a tetrameric form even when the cofactor had been removed. However, the wild-type enzyme underwent partial dissociation to a dimer, suggesting that the oligomeric structure was rendered more stable by the mutation of Arg-401. The increased stability of the mutant enzyme was also reflected in the higher apparent melting temperature (Tm) (61 degrees C) than that of the wild-type enzyme (56 degrees C). The addition of serine or serinamide did not change the apparent Tm of R401A mutant enzyme. These results suggest that the mutant enzyme might be in a permanently 'open' form and the increased apparent Tm could be due to enhanced subunit interactions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The novel multidomain organization in the multimeric Escherichia coli AHAS I (ilvBN) enzyme has been dissected to generate polypeptide fragments. These fragments when cloned, expressed and purified reassemble in the presence of cofactors to yield a catalytically competent enzyme. Structural characterization of AHAS has been impeded due to the fact that the holoenzyme is prone to dissociation leading to heterogeneity in samples. Our approach has enabled the structural characterization using high-resolution nuclear magnetic resonance methods. Near complete sequence specific NMR assignments for backbone H-N, N-15, C-13 alpha and C-13(beta) atoms of the FAD binding domain of ilvB have been obtained on samples isotopically enriched in H-2, C-13 and N-15. The secondary structure determined on the basis of observed C-13(alpha) secondary chemical shifts and sequential NOEs indicates that the secondary structure of the FAD binding domain of E. coli AHAS large Subunit (ilvB) is similar to the structure of this domain in the catalytic subunit of yeast AHAS. Protein-protein interactions involving the regulatory subunit (ilvN) and the domains of the catalytic subunit (ilvB) were studied using circular dichroic and isotope edited solution nuclear magnetic resonance spectroscopic methods. Observed changes in circular dichroic spectra indicate that the regulatory subunit (ilvN) interacts with ilvB alpha and ilvB beta domains of the catalytic subunit and not with the ilvB gamma domain. NMR chemical shift mapping methods show that ilvN binds close to the FAD binding site in ilvB beta and proximal to the intrasubunit ilvB alpha/ilvB beta domain interface. The implication of this interaction on the role of the regulatory subunit oil the activity of the holoenzyme is discussed. NMR studies of the regulatory domains show that these domains are structured in solution. Preliminary evidence for the interaction of ilvN with the metabolic end product of the pathway, viz., valine is also presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Homodimeric protein tryptophanyl tRNA synthetase (TrpRS) has a Rossmann fold domain and belongs to the 1c subclass of aminoacyl tRNA synthetases. This enzyme performs the function of acylating the cognate tRNA. This process involves a number of molecules (2 protein subunits, 2 tRNAs and 2 activated Trps) and thus it is difficult to follow the complex steps in this process. Structures of human TrpRS complexed with certain ligands are available. Based on structural and biochemical data, mechanism of activation of Trp has been speculated. However, no structure has yet been solved in the presence of both the tRNA(Trp) and the activated Trp (TrpAMP). In this study, we have modeled the structure of human TrpRS bound to the activated ligand and the cognate tRNA. In addition, we have performed molecular dynamics (MD) simulations on these models as well as other complexes to capture the dynamical process of ligand induced conformational changes. We have analyzed both the local and global changes in the protein conformation from the protein structure network (PSN) of MD snapshots, by a method which was recently developed in our laboratory in the context of the functionally monomeric protein, methionyl tRNA synthetase. From these investigations, we obtain important information such as the ligand induced correlation between different residues of this protein, asymmetric binding of the ligands to the two subunits of the protein as seen in the crystal structure analysis, and the path of communication between the anticodon region and the aminoacylation site. Here we are able to elucidate the role of dimer interface at a level of detail, which has not been captured so far.