868 resultados para Subspace Filter Diagonalization


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Granular filters are provided for the safety of water retaining structure for protection against piping failure. The phenomenon of piping triggers when the base soil to be protected starts migrating in the direction of seepage flow under the influence of seepage force. To protect base soil from migration, the voids in the filter media should be small enough but it should not also be too small to block smooth passage of seeping water. Fulfilling these two contradictory design requirements at the same time is a major concern for the successful performance of granular filter media. Since Terzaghi era, conventionally, particle size distribution (PSD) of granular filters is designed based on particle size distribution characteristics of the base soil to be protected. The design approach provides a range of D15f value in which the PSD of granular filter media should fall and there exist infinite possibilities. Further, safety against the two critical design requirements cannot be ensured. Although used successfully for many decades, the existing filter design guidelines are purely empirical in nature accompanied with experience and good engineering judgment. In the present study, analytical solutions for obtaining the factor of safety with respect to base soil particle migration and soil permeability consideration as proposed by the authors are first discussed. The solution takes into consideration the basic geotechnical properties of base soil and filter media as well as existing hydraulic conditions and provides a comprehensive solution to the granular filter design with ability to assess the stability in terms of factor of safety. Considering the fact that geotechnical properties are variable in nature, probabilistic analysis is further suggested to evaluate the system reliability of the filter media that may help in risk assessment and risk management for decision making.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Closed loop control of a grid connected VSI requires line current control and dc bus voltage control. The closed loop system comprising PR current controller and grid connected VSI with LCL filter is a higher order system. Closed loop control gain expressions are therefore difficult to obtain directly for such systems. In this work a simplified approach has been adopted to find current and voltage controller gain expressions for a 3 phase 4 wire grid connected VSI with LCL filter. The closed loop system considered here utilises PR current controller in natural reference frame and PI controller for dc bus voltage control. Asymptotic frequency response plot and gain bandwidth requirements of the system have been used for current control and voltage controller design. A simplified lower order model, derived for closed loop current control, is used for the dc bus voltage controller design. The adopted design method has been verified through experiments by comparison of the time domain response.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Oversmoothing of speech parameter trajectories is one of the causes for quality degradation of HMM-based speech synthesis. Various methods have been proposed to overcome this effect, the most recent ones being global variance (GV) and modulation-spectrum-based post-filter (MSPF). However, there is still a significant quality gap between natural and synthesized speech. In this paper, we propose a two-fold post-filtering technique to alleviate to a certain extent the oversmoothing of spectral and excitation parameter trajectories of HMM-based speech synthesis. For the spectral parameters, we propose a sparse coding-based post-filter to match the trajectories of synthetic speech to that of natural speech, and for the excitation trajectory, we introduce a perceptually motivated post-filter. Experimental evaluations show quality improvement compared with existing methods.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We propose a Monte Carlo filter for recursive estimation of diffusive processes that modulate the instantaneous rates of Poisson measurements. A key aspect is the additive update, through a gain-like correction term, empirically approximated from the innovation integral in the time-discretized Kushner-Stratonovich equation. The additive filter-update scheme eliminates the problem of particle collapse encountered in many conventional particle filters. Through a few numerical demonstrations, the versatility of the proposed filter is brought forth.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sequential Monte Carlo methods, also known as particle methods, are a widely used set of computational tools for inference in non-linear non-Gaussian state-space models. In many applications it may be necessary to compute the sensitivity, or derivative, of the optimal filter with respect to the static parameters of the state-space model; for instance, in order to obtain maximum likelihood model parameters of interest, or to compute the optimal controller in an optimal control problem. In Poyiadjis et al. [2011] an original particle algorithm to compute the filter derivative was proposed and it was shown using numerical examples that the particle estimate was numerically stable in the sense that it did not deteriorate over time. In this paper we substantiate this claim with a detailed theoretical study. Lp bounds and a central limit theorem for this particle approximation of the filter derivative are presented. It is further shown that under mixing conditions these Lp bounds and the asymptotic variance characterized by the central limit theorem are uniformly bounded with respect to the time index. We demon- strate the performance predicted by theory with several numerical examples. We also use the particle approximation of the filter derivative to perform online maximum likelihood parameter estimation for a stochastic volatility model.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Optimal Bayesian multi-target filtering is in general computationally impractical owing to the high dimensionality of the multi-target state. The Probability Hypothesis Density (PHD) filter propagates the first moment of the multi-target posterior distribution. While this reduces the dimensionality of the problem, the PHD filter still involves intractable integrals in many cases of interest. Several authors have proposed Sequential Monte Carlo (SMC) implementations of the PHD filter. However, these implementations are the equivalent of the Bootstrap Particle Filter, and the latter is well known to be inefficient. Drawing on ideas from the Auxiliary Particle Filter (APF), a SMC implementation of the PHD filter which employs auxiliary variables to enhance its efficiency was proposed by Whiteley et. al. Numerical examples were presented for two scenarios, including a challenging nonlinear observation model, to support the claim. This paper studies the theoretical properties of this auxiliary particle implementation. $\mathbb{L}_p$ error bounds are established from which almost sure convergence follows.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Optimal Bayesian multi-target filtering is, in general, computationally impractical owing to the high dimensionality of the multi-target state. The Probability Hypothesis Density (PHD) filter propagates the first moment of the multi-target posterior distribution. While this reduces the dimensionality of the problem, the PHD filter still involves intractable integrals in many cases of interest. Several authors have proposed Sequential Monte Carlo (SMC) implementations of the PHD filter. However, these implementations are the equivalent of the Bootstrap Particle Filter, and the latter is well known to be inefficient. Drawing on ideas from the Auxiliary Particle Filter (APF), we present a SMC implementation of the PHD filter which employs auxiliary variables to enhance its efficiency. Numerical examples are presented for two scenarios, including a challenging nonlinear observation model.