999 resultados para Structural geology, Tectonics
Resumo:
Abstract The study of fossil Tethyan continental margins implies the consideration of the oceanic domains to which they were connected. The advent of plate tectonics confirmed the importance of the detection of accretion-related mélanges. Ophiolitic mélanges are derived from both an upper ophiolitic obducting plate and a lower oceanic plate. Besides ophiolitic elements, the mélanges may incorporate parts of a magmatic arc and dismembered fragments of a passive continental margin. As the lower plate usually totally disappears during the obduction process, it can only be reconstructed from its elements found in the mélanges. Because of their key location at active margin boundaries, preserved accretion-related mélanges provide strong constraints on the geological evolution of former oceanic domains and their adjacent margins. The identification of Palaeotethyan remnants as accretionary series or reworked during the Late Triassic Eo-Cimmerian event, as well as the recognition of HugluPindos marginal sequences in southern Turkey and in the external Hellenides represent the main achievements of this work, making possible to establish new palaeogeographical correlations. The Mersin mélanges (Turkey), together with the Antalya and Mamonia (Cyprus) domains, are characterized by a series of exotic units found now south of the main Taurus range and compose the South-Taurides Exotic Units. The Mersin mélanges are subdivided in a Triassic and a Late Cretaceous unit. These units consist of the remnants of three major Tethyan oceans, the Palaeotethys, the Neotethys and the Huglu-Pindos. The definition and inventory of the Upper Antalya Nappes (Turkey) are still a matter of controversies and often conflicting interpretations. The recognition of Campanian radiolarians on top of the Kerner Gorge unit directly overlain by the Ordovician Seydi§ehir Fm. of the Tahtah Dag Nappe outlines a tectonic contact and demonstrates that the Upper Antalya Nappes system is composed of three different nappes, the Kerner Gorge, Bakirli and the Tahtah Dag nappes. Additionally, a limestone block in a doubtful tectonic position at the base of the Upper Antalya Nappes yielded for the first time two middle Viséan associations of foraminifers and problematic algae. The Tavas Nappe in the Lycian Nappes (Turkey) is classically divided into the Karadag, Teke Dere, Köycegiz and Haticeana units. As for the Mersin mélanges, the Tavas Nappe is highly composite and includes dismembered units belonging to the Palaeotethyan, Neotethyan and HugluPindos realms. The Karadag unit consists of a Gondwana-type platform succession ranging from the Late Devonian to the Late Triassic. It belongs to the Cimmerian Taurus terrane and was part of the northern passive margin of the Neotethys. The Teke Dere unit is composed of different parts of the Palaeotethyan succession including Late Carboniferous OIB-type basalts, Carboniferous MORB-type basalts, an Early Carboniferous siliciclastic series and a Middle Permian arc sequence. The microfauna and microflora identified in different horizons within the Teke Dere unit share strong biogeographical affinities with the northern Palaeotethyan borders. Kubergandian limestones in primary contact above the Early Carboniferous siliciclastics yielded a rich and diverse microfauna and microflora also identified in reworked cobbles within the Late Triassic Gevne Fm. of the Aladag unit (Turkey). The sedimentological evolution of the Köycegiz and Haticeana series is in many points similar to classical Pindos sequences. These series originated in the Huglu-Pindos Ocean along the northern passive margin of the Anatolian (Turkish transect) and Sitia-Pindos (Greek transect) terranes. Conglomerates at the base of the Lentas Unit in southern Crete (Greece) yielded a microfauna and microflora presenting also strong affinities with the northern borders of the Palaeotethys. This type of reworked sediments at the base of Pindos-like series would suggest a derivation from the Palaeotethyan active margin. -Résumé (French abstract) L'étude des marges continentales fossiles de l'espace téthysien implique d'étudier les domaines océaniques qui y étaient rattachés. Les progrès de la tectonique des plaques ont confirmé l'importance de la reconnaissance des mélanges d'accrétion. Les mélanges ophiolitiques dérivent d'une plaque supérieure ophiolitique qui obducte, et d'une plaque inférieure océanique. En plus d'éléments ophiolitiques, les mélanges peuvent aussi incorporer des parties d'un arc magmatique, ou des fragments d'une marge continentale passive. Comme la plaque inférieure disparaît généralement complètement durant le processus d'obduction, elle ne peut être reconstruite qu'au travers de ses éléments trouvés dans les mélanges. A cause de leur situation aux limites de marges actives, les mélanges d'accrétion bien préservés permettent de contraindre l'évolution géologique d'anciens océans et de leurs marges. L'identification de vestiges de la Paléotéthys en série d'accrétion ou remaniés lors de l'orogenèse éo-cimmérienne au Trias supérieur, ainsi que l'observation de séquences marginales de Huglu-Pinde en Turquie du sud et dans les Hellénides externes représentent les principaux résultats de ce travail, permettant d'établir de nouvelles corrélations paléogéographiques. Les mélanges de Mersin (Turquie), avec les domaines d'Antalya et de Mamonia (Chypre), sont caractérisés par des unités exotiques se trouvant au sud de la chaîne taurique, et forment les Unités Exotiques Sud-Tauriques. Les mélanges de Mersin sont subdivisés en une unité triasique, et une autre du Crétacé supérieur. Ces unités comprennent les reliques de trois principaux océans téthysiens, la Paléotéthys, la Néotéthys et Huglu-Pinde. L'inventaire et la définition des nappes supérieures d'Antalya (Turquie) sont encore matière à controverse et donne lieu à des interprétations conflictuelles. La découverte de radiolaires campaniens au sommet de l'unité de la Gorge de Kemer, directement recouverts par la formation ordovicienne de Seydisehir de la nappe du Tahtali Dag met en évidence un contact tectonique et démontre que les nappes supérieures sont composées de trois différentes nappes, celle de la Gorge de Kemer, celle du Bakirli et celle Tahtali Dag. De plus, un bloc de calcaire dont la position tectonique demeure incertaine à la base des nappes supérieures a fourni pour la première fois deux associations viséennes de foraminifères et d'algues problématiques. La nappe de Tavas dans les nappes lyciennes (Turquie) est séparée en unités du Karadag, du Teke Dere, de Köycegiz et d'Haticeana. Comme pour les mélanges de Mersin, la nappe de Tavas est composite et inclut des unités appartenant à la Paléotéthys, à la Néotéthys et à Huglu-Pinde. L'unité du Karadag est une plateforme carbonatée de type Gondwana se développant du Dévonien supérieur au Trias supérieur. Elle appartient au domaine cimmérien du Taurus et formait la marge nord de la Néotéthys. L'unité du Teke Dere est composée de différentes écailles paléotéthysiennes et inclut des basaltes d'île océanique du Carbonifère supérieur, des basaltes de ride océanique du Carbonifère, une série siliciclastique du Carbonifère supérieur et un arc du Permien moyen. Les microfaunes et -flores trouvées à différents niveaux de la série du Teke Dere partagent de fortes affinités paléogéographiques avec les marges nord de la Paléotéthys. Des calcaires du Kubergandien en contact primaire au-dessus de la série siliciclastique a donné de riches microfaunes et -flores, également identifiées dans des galets remaniés dans la formation de Gevne du Trias supérieur de l'Aladag. L'évolution sédimentologique des séries de Köycegiz et d'Haticeana sont très similaires aux séries classiques du Pinde. Ces séquences prennent leur racine dans l'océan de Huglu-Pinde, le long de la marge passive nord anatolienne (profil turc) et de la marge de Sitia-Pinde (profil grec). Des conglomérats à la base de l'unité de Lentas au sud de la Crète (Grèce) ont donné des microfaunes et flores partageant également de fortes similitudes avec les bordures nord de la Paléotéthys. Le type de sédiments remaniés à la base d'unités de type Pinde suggère une dérivation depuis la marge active de la Paléotéthys. -Résumé grand public (non-specialized abstract) Au début du 20ème siècle, Alfred Wegener bouleverse les croyances géologiques de l'époque et publie plusieurs articles sur la dérive ou la translation des continents. En utilisant des arguments géographiques (similarités des lignes de côte), paléontologiques (faunes et flores similaires) et climatiques (dépôts tropicaux et glaciaires), Wegener explique qu'il y a plusieurs millions d'années, les terres émergées actuelles ne devaient former qu'un seul et grand continent. La fin du 20ème siècle verra l'avènement de la théorie de la tectonique des plaques suite à la reconnaissance du cycle de Wilson, des rides médio-océaniques, des anomalies magnétiques dans les océans et des sutures océaniques qui représentent les reliques d'océans disparus. Le Cycle de Wilson se caractérise par une suite d'évènements géologiques majeurs pouvant se résumer de la manière suivante : (1) séparation d'un craton continental en deux parties, créant une limite de plaque divergente. C'est ce que l'on appelle un rift; (2) développement et croissance d'un océan entre ces deux blocs. Des roches magmatiques remontent à la surface de la terre et forment une chaîne de montagne sous-marine que l'on appelle ride médio-océanique ou dorsale. L'océan continue de se développer, et des sédiments se déposent à sa surface formant la suite ophiolitique ou trinité de Steinmann; (3) après une phase d'expansion plus ou moins longue, les conditions imposées aux limites des plaques à la surface de la terre changent, et l'océan se met à se refermer par disparition progressive (subduction) de sa croûte océanique sous une croûte continentale par exemple. Ceci crée une nouvelle limite de plaque, convergente cette fois; (4) la subduction de la plaque océanique sous la plaque continentale provoque une remontée de magma formant des chaînes volcaniques à la surface de la Terre ; (5) une fois que la plaque océanique a complètement disparu, les deux blocs préalablement séparés par l'océan font collision, formant ainsi une chaîne de montagne. Les chaînes de montagnes sont de manière générale formées par un empilement plus ou moins complexe de nappes. C'est au coeur de certaines de ces nappes que se trouvent les vestiges de l'océan disparu. Un des objectifs de ce travail était la recherche de ces vestiges dans le domaine téthysien de la Méditerranée orientale. Pour ce faire, nous avons parcourus une grande partie du sud de la Turquie, nous sommes allés à Chypre, dans le Sultanat d'Oman, en Iran, en Crète, et nous avons visités quelques îles grecques du Dodécanèse. La région de la Méditerranée orientale est une zone qui a été tectoniquement très active, et qui continue de l'être de nos jours par des phénomènes de subduction (ex. les volcans de Santorin), et par des mouvements coulissants entre des plaques continentales (ex. la faille nord-anatolienne) qui donnent régulièrement lieu à des tremblements de terre. Pour le géologue, la complexité de ces zones d'étude réside dans le fait que les chaînes de montagne actuelles ne contiennent en général pas seulement les restes d'un océan, mais bien de plusieurs bassins océaniques qui se sont succédés dans l'espace et dans le temps. Les nappes qui se trouvent au sud de la Turquie et dans le Dodécanèse forment un important jalon dans la chaîne alpine qui s'étend depuis les Alpes jusque dans l'Himalaya. L'idée d'un continuum au coeur de ce système se basait principalement sur l'âge des océans et sur la reconnaissance de similarités dans l'évolution des séries sédimentaires. La localisation des vestiges de la Paléotéthys ainsi que l'identification des séries sédimentaires ayant appartenu à l'océan de HugluPinde repris sous forme de nappes en Turquie et en Grèce sont cruciales pour permettre de bonnes corrélations locales et régionales. La reconnaissance, la compréhension et l'interprétation de ces séries sédimentaires permettront d'élaborer un modèle d'évolution géodynamique régional, s'appuyant sur des faits de terrains indiscutables, et prenant en compte les contraintes globales que ce genre d'exercice implique.
Resumo:
New stratigraphic data along a profile from the Helvetic Gotthard Massif to the remnants of the North Penninic Basin in eastern Ticino and Graubunden are presented. The stratigraphic record together with existing geochemical and structural data, motivate a new interpretation of the fossil European distal margin. We introduce a new group of Triassic facies, the North-Penninic-Triassic (NPT), which is characterised by the Ladinian "dolomie bicolori". The NPT was located in-between the Briançonnais carbonate platform and the Helvetic lands. The observed horizontal transition, coupled with the stratigraphic superposition of an Helvetic Liassic on a Briaçonnais Triassic in the Luzzone-Terri nappe, links, prior to Jurassic rifting, the Briançonnais paleogeographic domain at the Helvetic Margin, south of the Gotthard. Our observations suggest that the Jurassic rifting separated the Briançonnais domain from the Helvetic margin by complex and protracted extension. The syn-rift stratigraphic record in the Adula nappe and surroundings suggests the presence of a diffuse rising area with only moderately subsiding basins above a thinned continental and proto-oceanic crust. Strong subsidence occurred in a second phase following protracted extension and the resulting delamination of the rising area. The stratigraphic coherency in the Adula's Mesozoic questions the idea of a lithospheric mélange in the eclogitic Adula nappe, which is more likely to be a coherent alpine tectonic unit. The structural and stratigraphic observations in the Piz Terri-Lunschania zone suggest the activity of syn-rift detachments. During the alpine collision these faults are reactivated (and inverted) and played a major role in allowing the Adula subduction, the "Penninic Thrust" above it and in creating the structural complexity of the Central Alps.
Resumo:
This review paper deals with the geology of the NW Indian Himalaya situated in the states of Jammu and Kashmir, Himachal Pradesh and Garhwal. The models and mechanisms discussed, concerning the tectonic and metamorphic history of the Himalayan range, are based on a new compilation of a geological map and cross sections, as well as on paleomagnetic, stratigraphic, petrologic, structural, metamorphic, thermobarometric and radiometric data. The protolith of the Himalayan range, the North Indian flexural passive margin of the Neo-Tethys ocean, consists of a Lower Proterozoic basement, intruded by 1.8-1.9 Ga bimodal magmatites, overlain by a horizontally stratified sequence of Upper Proterozoic to Paleocene sediments, intruded by 470-500 Ma old Ordovician mainly peraluminous s-type granites, Carboniferous tholeiitic to alkaline basalts and intruded and overlain by Permian tholeiitic continental flood basalts. No elements of the Archaen crystalline basement of the South Indian shield have been identified in the Himalayan range. Deformation of the Himalayan accretionary wedge resulted from the continental collision of India and Asia beginning some 65-55 Ma ago, after the NE-directed underthrusting of the Neo-Tethys oceanic crust below Asia and the formation of the Andean-type 103-50 (-41) Ma old Ladakh batholith to the north of the Indus Suture. Cylindrical in geometry, the Himalayan range consists, from NE to SW, from older to younger tectonic elements, of the following zones: 1) The 25 km wide Ladakh batholith and the Asian mantle wedge form the backstop of the growing Himalayan accretionary wedge. 2) The Indus Suture zone is composed of obducted slices of the oceanic crust, island arcs, like the Dras arc, overlain by Late Cretaceous fore arc basin sediments and the mainly Paleocene to Early Eocene and Miocene epi-sutural intra-continental Indus molasse. 3) The Late Paleocene to Eocene North Himalayan nappe stack, up to 40 km thick prior to erosion, consists of Upper Proterozoic to Paleocene rocks, with the eclogitic and coesite bearing Tso Morari gneiss nappe at its base. It includes a branch of the Central Himalayan detachment, the 22-18 Ma old Zanskar Shear zone that is intruded and dated by the 22 Ma Gumburanjun leucogranite; it reactivates the frontal thrusts of the SW-verging North Himalayan nappes. 4) The late Eocene-Miocene SW-directed High Himalayan or ``Crystalline'' nappe comprises Upper Proterozoic to Mesozoic sediments and Ordovician granites, identical to those of the North Himalayan nappes. The Main Central thrust at its base was created in a zone of Eocene to Early Oligocene anatexis by ductile detachment of the subducted Indian crust, below the pre-existing 25-35 km thick NE-directed Shikar Beh and SW-directed North Himalayan nappe stacks. 5) The late Miocene Lesser Himalayan thrust with the Main Boundary Thrust at its base consists of early Proterozoic to Cambrian rocks intruded by 1.8-1.9 Ga bimodal magmatites. The Subhimalaya is a thrust wedge of Himalayan fore deep basin sediments, composed of the Early Eocene marine Subathu marls and sandstones as well as the up to 8'000 m-thick Miocene to recent Ganga molasse, a coarsening upwards sequence of shales, sandstones and conglomerates. The active frontal thrust is covered by the sediments of the Indus-Ganga plains.
Resumo:
Résumé : L'arc volcanique du sud de l'Amérique Centrale se situe sur la marge SW de la Plaque Caraïbe, au-dessus des plaques subduites de Cocos et Nazca. Il s'agit de l'un des arcs intra-océaniques les plus étudiés au monde, qui est généralement considéré comme s'étant développé à la fin du Crétacé le long d'un plateau océanique (le Plateau Caraïbe ou CLIP) et se trouvant actuellement dans un régime de subduction érosive. Au cours des dernières décennies, des efforts particuliers ont été faits pour comprendre les processus liés à la subduction sur la base d'études géophysiques et géochimiques. Au sud du Costa Rica et à l'ouest du Panama, des complexes d'accrétions et structures à la base de l'arc volcanique ont été exposés grâce à la subduction de rides asismiques et de failles transformantes. Des affleurements, situés jusqu'à seulement 15 km de la fosse, offrent une possibilité unique de mieux comprendre quelques uns des processus ayant lieu le long de la zone de subduction. Nous présentons de nouvelles contraintes sur l'origine de ces affleurements en alliant une étude de terrain poussée, de nouvelles données géochimiques, sédimentaires et paléontologiques, ainsi que des observations structurales effectuées en télédétection. Une nouvelle stratigraphie tectonique entre le Campanien et l'Éocène est définie pour la région d'avant-arc située entre la Péninsule d'Osa (Costa Rica) et la Péninsule d'Azuero (Panama). Nos résultats montrent que la partie externe de la marge est composée d'un arrangement complexe de roches ignées et de séquences sédimentaires de recouvrement qui comprennent principalement le socle de l'arc, des roches d'arc primitif, des fragments de monts sous-marins accrétés et des mélanges d'accrétion. Des preuves sont données pour le développement de l'arc volcanique du sud de l'Amérique Centrale sur un plateau océanique. Le début de la subduction le long de la marge SW de la Plaque Caraïbe a eu lieu au Campanien et a généré des roches d'arc primitif caractérisées par des affinités géochimiques particulières, globalement intermédiaires entre des affinités de plateau et d'arc insulaire. L'arc était mature au Maastrichtien et formait un isthme essentiellement continu entre l'Amérique du Nord et l'Amérique du Sud. Ceci a permis la migration de faunes terrestres entre les Amériques et pourrait avoir contribué à la crise fin Crétacé -Tertiaire en réduisant les courants océaniques subéquatoriaux entre le Pacifique et l'Atlantique. Plusieurs unités composées de fragments de monts sous-marins accrétés sont définies. La nature et l'arrangement structural de ces unités définissent de nouvelles contraintes sur les modes d'accrétion des monts sous-marins/îles océaniques et sur l'évolution de la marge depuis la formation de la zone de subduction. Entre la fin du Crétacé et l'Éocène moyen, la marge a enregistré plusieurs épisodes ponctuels d'accrétion de monts sous-marins alternant avec de la subduction érosive. A l'Éocène moyen, un événement tectonique régional pourrait avoir causé un fort couplage entre les plaques supérieure et inférieure, menant à des taux plus important d'accrétion de monts sous-marins. Durant cette période, la situation le long de la marge était très semblable à la situation actuelle et caractérisée par la présence de monts sous-marins subductants et l'absence d'accrétion de sédiments. L'enregistrement géologique montre qu'il n'est pas possible d'attribuer une nature érosive ou accrétionnaire à la marge dans le passé ou -par analogie- aujourd'hui, parce que (1) les processus d'accrétion et érosifs varient fortement spatialement et temporellement et (2) il est impossible d'évaluer la quantité exacte de matériel tectoniquement enlevé à la marge depuis le début de la subduction. Au sud du Costa Rica, certains fragments de monts sous-marins accrétés sont représentatifs d'une interaction entre une ride et un point chaud dans le Pacifique au Crétacé terminal/Paléocène. L'existence de ces fragments de monts sous-marins et la morphologie du fond de l'Océan Pacifique indiquent que la formation de la ride de Cocos-Nazca s'est formée au moins ~40 Ma avant l'âge proposé par les modèles tectoniques actuels. Au Panama, nous avons identifié une île océanique d'âge début Éocène qui a été accrétée à l'Éocène moyen. L'accrétion a eu lieu à très faible profondeur par détachement de l'île dans la fosse, et a mené à une exceptionnelle préservation des structures volcaniques. Des affleurement comprenant aussi bien des parties basses et hautes de l'édifice volcanique on été étudiées, depuis la phase sous-marine bouclier jusqu'à la phase subaérienne post-bouclier. La stratigraphie nous a permis de différencier les laves de la phase sous-marine de celles de la phase subaérienne. La composition des laves indique une diminution progressive de l'intensité de la fusion partielle de la source et une diminution de la température des laves produites durant les derniers stades de l'activité volcanique. Nous interprétons ces changements comme étant liés à l'éloignement progressif de l'île océanique de la zone de fusion ou point chaud. Abstract The southern Central American volcanic front lies on the SW edge of the Caribbean Plate, inboard of the subducting Cocos and Nazca Plates. It is one of the most studied intra-oceanic convergent margins around the world, which is generally interpreted to have developed in the late Cretaceous along an oceanic plateau (the Caribbean Large Igneous Province or CLIP) and to be currently undergoing a regime of subduction erosion. In the last decades a particular effort has been made to understand subduction-related processes on the basis of geophysical and geochemical studies. In southern Costa Rica and western Panama accretionary complexes and structures at the base of the volcanic front have been exposed in response to subduction of aseismic ridges and transforms. Onland exposures are located as close as to 15 km from the trench and provide a unique opportunity to better understand some of the processes occurring along the subduction zone. We provide new constraints on the origins of these exposures by integrating a comprehensive field work, new geochemical, sedimentary and paleontological data, as well as structural observations based on remote imaging. A new Campanian to Eocene tectonostratigraphy is defined for the forearc area located between the Osa Peninsula (Costa Rica) and the Azuero Peninsula (Panama). Our results show that the outer margin is composed of a complicated arrangement of igneous complexes and overlapping sedimentary sequences that essentially comprise an arc basement, primitive island-arc rocks, accreted seamount fragments and accretionary mélanges. Evidences are provided for the development of the southern Central American arc on the top an oceanic plateau. The subduction initiation along the SW edge of the Caribbean Plate occurred in the Campanian and led to formation of primitive island-arc rocks characterized by unusual geochemical affinities broadly intermediate between plateau and arc affinities. The arc was mature in the Maastrichtian and was forming a predominantly continuous landbridge between the North and South Americas. This allowed migration of terrestrial fauna between the Americas and may have contributed to the Cretaceous-Tertiary crisis by limiting trans-equatorial oceanic currents between the Pacific and the Atlantic. Several units composed of accreted seamount fragments are defined. The nature of the units and their structural arrangement provide new constraints on the modes of accretion of seamounts/oceanic islands and on the evolution of the margin since subduction initiation. Between the late Cretaceous and the middle Eocene, the margin recorded several local episodes of seamount accretion alternating with tectonic erosion. In the middle Eocene a regional tectonic event may have triggered strong coupling between the overriding and subducting plates, leading to higher rates of seamount accretion. During this period the situation along the margin was very similar to the present and characterized by subducting seamounts and absence of sediment accretion. The geological record shows that it is not possible to ascribe an overall erosive or accretionary nature to the margin in the past and, by analogy, today, because (1) accretionary and erosive processes exhibit significant lateral and temporal variations and (2) it is impossible to estimate the exact amount of material tectonically eroded from the margin since subduction initiation. In southern Costa Rica, accreted seamount fragments point toward a plume-ridge interaction in the Pacific in the late Cretaceous/Paleocene. This occurrence of accreted seamount fragments and morphology of the Pacific Ocean floor is indicative of the formation of the Cocos-Nazca spreading system at least ~40 Ma prior to the age proposed in current tectonic models. In Panama, we identified a remarkably-well preserved early Eocene oceanic island that accreted in the middle Eocene. The accretion probably occurred at very shallow depth by detachment of the island in the trench and led to an exceptional preservation of the volcanic structures. Exposures of both deep and superficial parts of the volcanic edifice have been studied, from the submarine-shield to subaerial-postshield stages. The stratigraphy allowed us to distinguish lavas produced during the submarine and subaerial stages. The lava compositions likely define a progressive diminution of source melting and a decrease in the temperature of erupted melts in the latest stages of volcanic activity. We interpret these changes to primarily reflect the progressive migration of the oceanic island out of the melting region or hotspot.
Resumo:
Large slope failures in fractured rocks are often controlled by the combination of pre-existing tectonic fracturing and brittle failure propagation in the intact rock mass during the pre-failure phase. This study focuses on the influence of fold-related fractures and of post-folding fractures on slope instabilities with emphasis on Turtle Mountain, located in SW Alberta (Canada). The structural features of Turtle Mountain, especially to the south of the 1903 Frank Slide, were investigated using a high-resolution digital elevation model combined with a detailed field survey. These investigations allowed the identification of six main discontinuity sets influencing the slope instability and surface morphology. According to the different deformation phases affecting the area, the potential origin of the detected fractures was assessed. Three discontinuity sets are correlated with the folding phase and the others with post-folding movements. In order to characterize the rock mass quality in the different portions of the Turtle Mountain anticline, the geological strength index (GSI) has been estimated. The GSI results show a decrease in rock mass quality approaching the fold hinge area due to higher fracture persistence and higher weathering. These observations allow us to propose a model for the potential failure mechanisms related to fold structures.
Resumo:
New stratigraphic data along a profile from the Helvetic Gotthard massif to the remnants of the North Penninic basin in eastern Ticino and Graubunden are presented. The stratigraphic record together with existing geochemical and structural data, motivate a new interpretation of the fossil European distal margin. We introduce a new group of Triassic facies, the North-Penninic-Triassic (NPT), which is characterised by the Ladinian ``dolomie bicolori''. The NPT was located in-between the Brianconnais carbonate platform and the Helvetic lands. The observed horizontal transition, coupled with the stratigraphic superposition of a Helvetic Liassic on a Briaconnais Triassic in the Luzzone-Terri nappe, links, prior to Jurassic rifting, the Brianconnais paleogeographic domain at the Helvetic margin, south of the Gotthard. Our observations suggest that the Jurassic rifting separated the Brianconnais domain from the Helvetic margin by complex and protracted extension. The syn-rift stratigraphic record in the Adula nappe and surroundings suggests the presence of a diffuse rising area with only moderately subsiding basins above a thinned continental and proto-oceanic crust. Strong subsidence occurred in a second phase following protracted extension and the resulting delamination of the rising area. The stratigraphic coherency in the Adula's Mesozoic questions the idea of a lithospheric m lange in the eclogitic Adula nappe, which is more likely to be a coherent alpine tectonic unit. The structural and stratigraphic observations in the Piz Terri-Lunschania zone suggest the activity of syn-rift detachments. During the alpine collision these faults are reactivated (and inverted) and played a major role in allowing the Adula subduction, the ``Penninic Thrust'' above it and in creating the structural complexity of the Central Alps. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
The geologic structures and metamorphic zonation of the northwestern Indian Himalaya contrast significantly with those in the central and eastern parts of the range, where the high-grade metamorphic rocks of the High Himalayan Crystalline (HHC) thrust southward over the weakly metamorphosed sediments of the Lesser Himalaya along the Main Central Thrust (MCT). Indeed, the hanging wall of the MCT in the NW Himalaya mainly consists of the greenschist facies metasediments of the Chamba zone, whereas HHC high-grade rocks are exposed more internally in the range as a large-scale dome called the Gianbul dome. This Gianbul dome is bounded by two oppositely directed shear zones, the NE-dipping Zanskar Shear Zone (ZSZ) on the northern flank and the SW-dipping Miyar Shear Zone (MSZ) on the southern limb. Current models for the emplacement of the HHC in NW India as a dome structure differ mainly in terms of the roles played by both the ZSZ and the MSZ during the tectonothermal evolution of the HHC. In both the channel flow model and wedge extrusion model, the ZSZ acts as a backstop normal fault along which the high-grade metamorphic rocks of the HHC of Zanskar are exhumed. In contrast, the recently proposed tectonic wedging model argues that the ZSZ and the MSZ correspond to one single detachment system that operates as a subhorizontal backthrust off of the MCT. Thus, the kinematic evolution of the two shear zones, the ZSZ and the MSZ, and their structural, metamorphic and chronological relations appear to be diagnostic features for discriminating the different models. In this paper, structural, metamorphic and geochronological data demonstrate that the MSZ and the ZSZ experienced two distinct kinematic evolutions. As such, the data presented in this paper rule out the hypothesis that the MSZ and the ZSZ constitute one single detachment system, as postulated by the tectonic wedging model. Structural, metamorphic and geochronological data are used to present an alternative tectonic model for the large-scale doming in the NW Indian Himalaya involving early NE-directed tectonics, weakness in the upper crust, reduced erosion at the orogenic front and rapid exhumation along both the ZSZ and the MSZ.
Resumo:
L?objectif de ce travail de recherche était de décrypter l?évolution géodynamique de la Péninsule de Biga (Turquie du N-O), à travers l?analyse de deux régions géologiques peu connues, le mélange de Çetmi et la zone d?Ezine (i.e. le Groupe d?Ezine et l?ophiolite de Denizgören). Une étude complète et détaillée de terrain (cartographie et échantillonnage) ainsi qu?une approche multidisciplinaire (sédimentologie de faciès, pétrographie sédimentaire et magmatique, micropaléontologie, datations absolues, géochimie sur roche totale, cristallinité de l?illite) ont permis d?obtenir de nouveaux éléments d?information sur la région considérée. ? Le mélange de Çetmi, de type mélange d?accrétion, affleure au nord et au sud de la Péninsule de Biga ; les principaux résultats de son étude peuvent se résumer comme suit: - Son aspect structural actuel (nature des contacts, organisation tectonique) est principalement dû au régime extensif Tertiaire présent dans la région. - Il est constitué de blocs de différentes natures : rares calcaires Scythien-Ladinien dans le faciès Han Bulog, blocs hectométriques de calcaires d?âge Norien-Rhaetien de rampe carbonatée, nombreux blocs décamétriques de radiolarites rouges d?âge Bajocien- Aptien, blocs/écailles de roches magmatiques de type spilites (basaltes à andésite), ayant des signatures géochimiques d?arcs ou intra-plaques. - La matrice du mélange est constituée d?une association greywacke-argilites dont l?âge Albien inférieur à moyen a été déterminé par palynologie. - L?activité du mélange s?est terminée avant le Cénomanien (discordance Cénomanienne au sommet du mélange, pas de bloc plus jeune que la matrice). - Du point de vue de ses corrélations latérales, le mélange de Çetmi partage plus de traits communs avec les mélanges se trouvant dans les nappes allochtones du Rhodope (nord de la Grèce et sud-ouest de la Bulgarie) qu?avec ceux de la suture Izmir-Ankara (Turquie); il apparaît finalement que sa mise en place s?est faite dans une logique balkanique (chevauchements vers le nord d?âge anté-Cénomanien). ? Le Groupe d?Ezine et l?ophiolite sus-jacente de Denizgören affleurent dans la partie ouest de la Péninsule de Biga. Le Groupe d?Ezine est une épaisse séquence sédimentaire continue (3000 m), subdivisée en trois formations, caractérisée chacune par un type de sédimentation spécifique, relatif à un environnement de dépôt particulier. De par ses caractéristiques (grande épaisseur, variations latérales de faciès et d?épaisseur dans les formations, érosion de matériel provenant de l?amont du bassin), le groupe d?Ezine est interprétée comme un dépôt syn-rift d?âge Permien moyen-Trias inférieur. Il pourrait représenter une partie de la future marge passive sud Rhodopienne à la suite de l?ouverture de l?océan Maliac/Méliata. L?ophiolite de Denizgören sus-jacente repose sur le Groupe d?Ezine par l?intermédiaire d?une semelle métamorphique à gradient inverse, du faciès amphibolite à schiste vert. L?âge du faciès amphibolite suggère une initiation de l?obduction au Barrémien (125 Ma, âge Ar/Ar); cet âge est unique dans le domaine égéen, mais il peut là aussi être relié à une logique balkanique, sur la base de comparaison avec le domaine Rhodopien. ? Toutes les unités précédentes (mélange de Çetmi, Groupe d?Ezine et ophiolite de Denizgören) ont passivement subi trois phases extensives pendant le Tertiaire. Dans la région d?Ezine et du mélange nord, les micaschistes HP sous-jacents ont été exhumés avant l?Eocène moyen. Dans le cas du mélange sud, cette exhumation Eocene est en partie enregistrée dans les mylonites séparant le mélange du dôme métamorphique sous-jacent du Kazda?. Le mélange sud est dans tous les cas fortement érodé à la suite de la double surrection du dôme du Kazda?, près de la lim ite Oligocène/Miocene et pendant le Plio- Quaternaire. Dans le premier cas, ce soulèvement est caractérisé par le développement d?une faille de détachement à faible pendage, qui contrôle à la fois l?exhumation du massif, et la formation d?un bassin sédimentaire syntectonique, de type bassin supradétachement; quant à la phase extensive la plus récente, elle est contrôlée par le jeu de failles normales à forts pendages qui remanient l?ensemble des structures héritées, et dictent la géomorphologie actuelle de la région. ? Il est possible de proposer un scénario pour l?évolution géodynamique de la Péninsule de Biga, basé sur l?ensemble des résultats précédents et sur les données de la géologie régionale ; ses points principaux sont: - La Péninsule de Biga fait partie de la marge Rhodopienne. - Le Groupe d?Ezine est un témoin de la marge passive nord Maliac/Méliata. - L?ophiolite de Denizgören et le mélange de Çetmi ont été mis en place tous deux vers le nord sur la marge précédente, respectivement au Barrémien et à l?Albien terminal- Cénomanien inférieur. - Une forte composante décrochante durant l?emplacement est suggérée par la préservation de fragments de la marge passive et l?absence de métamorphisme dans la plaque inférieure. - Tous les évènements précédents ont été largement affectés par le régime d?extension Tertiaire.<br/><br/>The purpose of this study is to unravel the geodynamic evolution of the Biga Peninsula (NW Turkey) through the detailed study of two poorly known areas, the Çetmi mélange and the Ezine zone (i.e. the Ezine Group and the Denizgören ophiolite). The methodology was based on a detailed field work and a multidisciplinary approach. ? The accretion-related Çetmi mélange is mainly cropping out north and south of the Biga Peninsula; the main results of its study can be summarized as follows: -Its present-day structural aspect (type of contacts, tectonic organisation) is largely inherited from the Tertiary extensional regime in the region. -It is made of blocks of various natures: Han Bulog limestones with a Scythian to Ladinian age, common carbonate ramp Norian-Rhaetian limestones (biggest blocks of the mélange), red radolarite with a Bajocian to Aptian age; the most common lithology of the mélange is made by block/slices of spilitic magmatic rocks (basalt to andesite); they have volcanic arc or within plate basalt geochemical signatures. -The matrix of the mélange is made of a greywacke-shale association of Early-Middle Albian age. - The mélange stopped its activity before the Cenomanian (no younger blocks than the matrix, and Cenomanian unconformity). - If compared to the regional geology, the Çetmi mélange shares some characteristics with the Izmir-Ankara mélanges (less), and with the mélanges from allochthonous nappes found in eastern Rhodope (more); it appears finally that its emplacement is related to a Balkanic logic (ante-Cenomanian northward thrusting). ? The Ezine Group and the overlying Denizgören ophiolite are cropping out in the western part of the Biga Peninsula. The Ezine Group is a thick sedimentary sequence interpreted as a syn-rift deposit of Middle Permian-Early Triassic age. It represents a part of the south Rhodopian passive margin, following the opening of the Maliac/Meliata oceanic domain. The Denizgören ophiolite has been emplaced northward on the Ezine Group in the Barremian (125 Ma, age of the amphibolitic sole); this age is unique in the Aegean domain, but here again, it may be related to a Balkan logic. ? All the previous units (Çetmi mélange, Ezine Group and Denizgören ophiolite) have passively suffered two extensional regimes during the Tertiary. In the Ezine and northern Çetmi mélange area, the underlying HP Çamlýca micaschists were exhumed before the Middle Eocene. As for the southern mélange, it was strongly eroded following the Late Oligocene to Quaternary uplift of the underlying Kazda? Massif. This uplift was characterized by the development of a low-angle detachment fault controlling a part of the exhumation, as well as the development of a supra-detachment basin. ? Based on the previous results, and on the data from the regional geology, one can propose a scenario for the geodynamic evolution of the Biga Peninsula. Its key points are:- The Biga Peninsula is belonging to the Rhodope margin. - The Ezine Group is a remnant of the northern Maliac/Meliata passive margin. - Both the Denizgören ophiolite and the Çetmi mélange have been emplaced northward on the previous margin, respectively in the Barremian and in the Late Albian-Early Cenomanian times. - The preservation of the remnants of the Rhodope margin, as well as the absence of metamorphism in the lower plate suggest a strong strike-slip component during the emplacements. - All the previous events are (at least) partly obliterated by the Tertiary extensional regime.<br/><br/>Le géologue est comme un «historien» de la Terre, qui porte un intérêt particulier à l?étude du passé de notre planète; ce dernier, très ancien, se mesure en dizaines ou centaines de millions d?années (Ma). Or le visage de la terre a constamment évolué au cours des ces millions d?années écoulés, car les plaques (continentales et océaniques) qui composent son enveloppe superficielle ne restent pas immobiles, mais se déplacent continuellement à sa surface, à une vitesse de l?ordre du cm/an (théorie de la tectonique des plaques); c?est ainsi, par exemple, que des océans naissent, grandissent, puis finissent par se refermer. On appelle sutures océaniques, les zones, aujourd?hui sur la terre ferme, où l?on retrouve les restes d?océans disparus. Ces sutures sont caractérisées par deux associations distinctes de roches, que l?on appelle les mélanges et les ophiolites; ces mélanges et ophiolites sont donc les témoins de l?activité passée d?un océan aujourd?hui refermé. L?équipe de recherche dans laquelle ce travail à été réalisé s?intéresse à un vaste domaine océanique fossile: l?océan Néotéthys. Cet océan, de plusieurs milliers de kilomètres de large, séparait alors l?Europe et l?Asie au nord, de l?Afrique, l?Inde et l?Australie au sud. De cet océan, il n?en subsiste aujourd?hui qu?une infime partie, qui se confond avec notre mer Méditerranée actuelle. Or, tout comme l?océan Pacifique est bordé de mers plus étroites (Mer de Chine, du Japon, etc?), l?océan Néotéthys était bordé au nord de mers marginales. C?est dans ce cadre que s?est inscrit mon travail de thèse, puisqu?il a consisté en l?étude d?une suture océanique (mélange plus ophiolite), témoin d?une des mers qui bordait l?océan Néotéthys sur sa marge nord. L?objectif était de préciser de quelle suture il s?agissait, puis de déterminer quand et comment elle avait fonctionné (i.e son évolution géologique). Les roches qui composent cette suture affleurent aujourd?hui en Turquie nord occidentale dans la Péninsule de Biga. Au nord et au sud de la péninsule se trouvent les zones géologique du mélange de Çetmi, et à l?ouest, le Groupe d?Ezine et l?ophiolite susjacente, dite ophiolite de Denizgören. Une étude complète et détaillée de terrain (cartographie, échantillonnage), suivie de diverses analyses en laboratoire (détermination de leur âge, de leur condition de formation, etc?), ont permis d?aboutir aux principaux résultats suivants : - Mise en évidence dans le mélange de Çetmi des témoins (1) de l?océan Lycien disparu (ancienne mer marginale de la Néotéthys), et (2) de la marge continentale qui le bordait au nord. - Fin de l?activité du mélange de Çetmi il y a environ 105 Ma (Albien). - Le mélange de Çetmi est difficilement corrélable dans le temps avec les unités semblables affleurant dans la région d?étude (unicité du mélange), ce qui implique des conditions particulière de formation. - L?ophiolite de Denizgören est un morceau d?océan Lycien posé sur un reste préservé de sa marge continentale nord. - Cette dernière est représentée sur le terrain par une succession de roches caractéristiques, le Groupe d?Ezine. Celui-ci est lui-même un témoin de l?ouverture d?un océan marginal de la Néotethys antérieur au Lycien, l?océan Maliac, qui s?est ouvert il y a 245 Ma (Permien-Trias). - La mise en place de l?ophiolite de Denizgören sur le Groupe d?Ezine (125 Ma, Barrémien) est antérieure à la mise en place du mélange de Çetmi. - Il apparaît que ces deux mises en place sont contemporaines de la formation de la chaîne des Balkans, terminée avant le Cénomanien (100 Ma). - L?évolution dans le temps des objets précédents (océans, marges continentales) montre de grands mouvements latéraux est-ouest entre ces objets (translation). Ce qui implique que les roches que l?on retrouve aujourd?hui sur un transect nord-sud ne l?étaient pas nécessairement auparavant. - Enfin, il s?avère que le mélange de Çetmi, l?ophiolite de Denizgören, et le Groupe d?Ezine ont subi par la suite des déformations extensives importantes qui ont considérablement perturbé le schéma post-mise en place.
Resumo:
Les reconstructions palinspastiques fournissent le cadre idéal à de nombreuses études géologiques, géographiques, océanographique ou climatiques. En tant qu?historiens de la terre, les "reconstructeurs" essayent d?en déchiffrer le passé. Depuis qu?ils savent que les continents bougent, les géologues essayent de retracer leur évolution à travers les âges. Si l?idée originale de Wegener était révolutionnaire au début du siècle passé, nous savons depuis le début des années « soixante » que les continents ne "dérivent" pas sans but au milieu des océans mais sont inclus dans un sur-ensemble associant croûte « continentale » et « océanique »: les plaques tectoniques. Malheureusement, pour des raisons historiques aussi bien que techniques, cette idée ne reçoit toujours pas l'écho suffisant parmi la communauté des reconstructeurs. Néanmoins, nous sommes intimement convaincus qu?en appliquant certaines méthodes et certains principes il est possible d?échapper à l?approche "Wégenerienne" traditionnelle pour enfin tendre vers la tectonique des plaques. Le but principal du présent travail est d?exposer, avec tous les détails nécessaires, nos outils et méthodes. Partant des données paléomagnétiques et paléogéographiques classiquement utilisées pour les reconstructions, nous avons développé une nouvelle méthodologie replaçant les plaques tectoniques et leur cinématique au coeur du problème. En utilisant des assemblages continentaux (aussi appelés "assemblées clés") comme des points d?ancrage répartis sur toute la durée de notre étude (allant de l?Eocène jusqu?au Cambrien), nous développons des scénarios géodynamiques permettant de passer de l?une à l?autre en allant du passé vers le présent. Entre deux étapes, les plaques lithosphériques sont peu à peu reconstruites en additionnant/ supprimant les matériels océaniques (symbolisés par des isochrones synthétiques) aux continents. Excepté lors des collisions, les plaques sont bougées comme des entités propres et rigides. A travers les âges, les seuls éléments évoluant sont les limites de plaques. Elles sont préservées aux cours du temps et suivent une évolution géodynamique consistante tout en formant toujours un réseau interconnecté à travers l?espace. Cette approche appelée "limites de plaques dynamiques" intègre de multiples facteurs parmi lesquels la flottabilité des plaques, les taux d'accrétions aux rides, les courbes de subsidence, les données stratigraphiques et paléobiogéographiques aussi bien que les évènements tectoniques et magmatiques majeurs. Cette méthode offre ainsi un bon contrôle sur la cinématique des plaques et fournit de sévères contraintes au modèle. Cette approche "multi-source" nécessite une organisation et une gestion des données efficaces. Avant le début de cette étude, les masses de données nécessaires était devenues un obstacle difficilement surmontable. Les SIG (Systèmes d?Information Géographiques) et les géo-databases sont des outils informatiques spécialement dédiés à la gestion, au stockage et à l?analyse des données spatialement référencées et de leurs attributs. Grâce au développement dans ArcGIS de la base de données PaleoDyn nous avons pu convertir cette masse de données discontinues en informations géodynamiques précieuses et facilement accessibles pour la création des reconstructions. Dans le même temps, grâce à des outils spécialement développés, nous avons, tout à la fois, facilité le travail de reconstruction (tâches automatisées) et amélioré le modèle en développant fortement le contrôle cinématique par la création de modèles de vitesses des plaques. Sur la base des 340 terranes nouvellement définis, nous avons ainsi développé un set de 35 reconstructions auxquelles est toujours associé un modèle de vitesse. Grâce à cet ensemble de données unique, nous pouvons maintenant aborder des problématiques majeurs de la géologie moderne telles que l?étude des variations du niveau marin et des changements climatiques. Nous avons commencé par aborder un autre problème majeur (et non définitivement élucidé!) de la tectonique moderne: les mécanismes contrôlant les mouvements des plaques. Nous avons pu observer que, tout au long de l?histoire de la terre, les pôles de rotation des plaques (décrivant les mouvements des plaques à la surface de la terre) tendent à se répartir le long d'une bande allant du Pacifique Nord au Nord de l'Amérique du Sud, l'Atlantique Central, l'Afrique du Nord, l'Asie Centrale jusqu'au Japon. Fondamentalement, cette répartition signifie que les plaques ont tendance à fuir ce plan médian. En l'absence d'un biais méthodologique que nous n'aurions pas identifié, nous avons interprété ce phénomène comme reflétant l'influence séculaire de la Lune sur le mouvement des plaques. La Lune sur le mouvement des plaques. Le domaine océanique est la clé de voute de notre modèle. Nous avons attaché un intérêt tout particulier à le reconstruire avec beaucoup de détails. Dans ce modèle, la croûte océanique est préservée d?une reconstruction à l?autre. Le matériel crustal y est symbolisé sous la forme d?isochrones synthétiques dont nous connaissons les âges. Nous avons également reconstruit les marges (actives ou passives), les rides médio-océaniques et les subductions intra-océaniques. En utilisant ce set de données très détaillé, nous avons pu développer des modèles bathymétriques 3-D unique offrant une précision bien supérieure aux précédents.<br/><br/>Palinspastic reconstructions offer an ideal framework for geological, geographical, oceanographic and climatology studies. As historians of the Earth, "reconstructers" try to decipher the past. Since they know that continents are moving, geologists a trying to retrieve the continents distributions through ages. If Wegener?s view of continent motions was revolutionary at the beginning of the 20th century, we know, since the Early 1960?s that continents are not drifting without goal in the oceanic realm but are included in a larger set including, all at once, the oceanic and the continental crust: the tectonic plates. Unfortunately, mainly due to technical and historical issues, this idea seems not to receive a sufficient echo among our particularly concerned community. However, we are intimately convinced that, by applying specific methods and principles we can escape the traditional "Wegenerian" point of view to, at last, reach real plate tectonics. This is the main aim of this study to defend this point of view by exposing, with all necessary details, our methods and tools. Starting with the paleomagnetic and paleogeographic data classically used in reconstruction studies, we developed a modern methodology placing the plates and their kinematics at the centre of the issue. Using assemblies of continents (referred as "key assemblies") as anchors distributed all along the scope of our study (ranging from Eocene time to Cambrian time) we develop geodynamic scenarios leading from one to the next, from the past to the present. In between, lithospheric plates are progressively reconstructed by adding/removing oceanic material (symbolized by synthetic isochrones) to major continents. Except during collisions, plates are moved as single rigid entities. The only evolving elements are the plate boundaries which are preserved and follow a consistent geodynamical evolution through time and form an interconnected network through space. This "dynamic plate boundaries" approach integrates plate buoyancy factors, oceans spreading rates, subsidence patterns, stratigraphic and paleobiogeographic data, as well as major tectonic and magmatic events. It offers a good control on plate kinematics and provides severe constraints for the model. This multi-sources approach requires an efficient data management. Prior to this study, the critical mass of necessary data became a sorely surmountable obstacle. GIS and geodatabases are modern informatics tools of specifically devoted to store, analyze and manage data and associated attributes spatially referenced on the Earth. By developing the PaleoDyn database in ArcGIS software we converted the mass of scattered data offered by the geological records into valuable geodynamical information easily accessible for reconstructions creation. In the same time, by programming specific tools we, all at once, facilitated the reconstruction work (tasks automation) and enhanced the model (by highly increasing the kinematic control of plate motions thanks to plate velocity models). Based on the 340 terranes properly defined, we developed a revised set of 35 reconstructions associated to their own velocity models. Using this unique dataset we are now able to tackle major issues of the geology (such as the global sea-level variations and climate changes). We started by studying one of the major unsolved issues of the modern plate tectonics: the driving mechanism of plate motions. We observed that, all along the Earth?s history, plates rotation poles (describing plate motions across the Earth?s surface) tend to follow a slight linear distribution along a band going from the Northern Pacific through Northern South-America, Central Atlantic, Northern Africa, Central Asia up to Japan. Basically, it sighifies that plates tend to escape this median plan. In the absence of a non-identified methodological bias, we interpreted it as the potential secular influence ot the Moon on plate motions. The oceanic realms are the cornerstone of our model and we attached a particular interest to reconstruct them with many details. In this model, the oceanic crust is preserved from one reconstruction to the next. The crustal material is symbolised by the synthetic isochrons from which we know the ages. We also reconstruct the margins (active or passive), ridges and intra-oceanic subductions. Using this detailed oceanic dataset, we developed unique 3-D bathymetric models offering a better precision than all the previously existing ones.
Resumo:
Iberia underwent intraplate deformation during the Mesozoic and Cenozoic. In eastem Ibena, compression took place during the Palaeogene and early Miocene, giving rise to the Iberian Chain, and extension started during the early Miocene in the coastal areas and the Valencia trough; during early Miocene compression continued in the western Iberian Chain whereas extension had started in the eastern Iberian Chain. From the kinematic data obtained from the major compressional and extensional structures formed dunng the Cenozoic, a simple dynamic model using Bott's (1959) formula is presented. The results show that both extension and compression may have been produced assuming a main horizontal stress-axis approximately N-S, in a similar direction that the convergence between Europe, Ibena and Afnca dunng the Cenozoic.
Resumo:
Rocks correlated with the Hough Lake and Quirke Lake Groups of the Huronian Supergroup form part of a northeasterly trending corridor that separates 1750 Ma granitic intrusive rocks of the Chief Lake batholith from the 1850 Ma mafic intrusive rocks of the Sudbury Igneous Complex. This corridor is dissected by two major structural features; the Murray Fault Zone (MFZ) and the Long Lake Fault (LLF). Detailed structural mapping and microstructural analysis indicates that the LLF, which has juxtaposed Huronian rocks of different deformation style and metamorphism grade, was a more significant plane of dislocation than the MFZ. The sense of displacement along the LLF is high angle reverse in which rocks to the southeast have been raised relative to those in the northwest. South of the LLF Huronian rocks underwent ductile defonnation at amphibolite facies conditions. The strain was constrictional, defined by a triaxial strain ellipsoid in which X > Y > z. Calculations of a regional k value were approximately 1.3. Penetrative ductile defonnation resulted in the development of a preferred crystallographic orientation in quartz as well as the elongation of quartz grains to fonn a regional southeast-northwest trending, subvertical lineation. Similar lithologies north of the LLF underwent dominantly brittle deformation under greenschist facies conditions. Deformation north of the LLF is characterized by the thrusting of structural blocks to form angular discordances in bedding orientation which were previously interpreted as folds. Ductile deformation occurred between 1750 and 1238 Ma and is correlated with a regional period of south over north reverse faulting that effected much of the southern Sudbury region. Post dating the reverse faulting event was a period of sedimentation as a conglomerate unit was deposited on vertically bedded Huronian rocks. Rocks in the study area were intruded by both mafic and felsic dykes. The 1238 Ma mafic dykes appear to have been offset during a period of dextral strike slip displacement along the major fault'). Indirect evidence indicates that this event occurred after the thrusting at 950 to 1100 Ma associated with the Grenvillian Orogeny.
Resumo:
The Rankin Inlet area, on the west shore of Hudson Bay in the Northwest Territories, is in the Churchill Structural Province. Metamorphosed volcanic and sedimentary rocks, previously mapped as Archean and part of the Kaminak Group, underlie most of the area. The Rankin Inlet Group consists of greywacke, with minor conglomeratic greywacke, quartzite and dolomite, overlain by massive and pillowed basaltic flows. Gabbro sills intrude the sediments near the base of the volcanic sequence and three serpentinite sills outcrop at the base of the volcanic sequence. The sediments are in fault-contact with quartz monzonite to the south and were intruded by granitic rocks to the northwest. Two periods of folding were defined by the mapping. The first generation folds are recumbent isoclinal folds, with northwest-trending and northeast-dipping axial planes, formed through gravitational sliding. The second generation folds are symmetrically disposed about the axis of the granitic intrusion and have east-southeast trending and nearly vertical axial planes. Whole-rock analysis of 64 rock samples indicates that metasomatic alteration accompanied the intrusion of both the granitic rocks and the serpentinite. The volcanic rocks, gabbro and serpentinite were derived from a magma of oceanic tholeiitic affinities. The stratigraphic sequence and chemistry of the volcanic rocks of the Rankin Inlet Group indicate that this assemblage is correlative with the Hurwitz Group rather than the Kaminak Group and is therefore Aphebian in age.
Resumo:
The study area is situated in NE Newfoundland between Gander Lake and the north coast and on the boundary between the Gander and Botwood tectonostratigraphic zones (Williams et al., 1974). The area is underlain by three NE trending units; the Gander Group, the Gander River Ultramafic Belt (the GRUB) and the Davidsville Group. The easternmost Gander Group consists of a thick, psammitic unit composed predominantly of psammitic schist and a thinner, mixed unit of semipelitic and pelitic schist with minor psammite. The mixed unit may stratigraphically overlie the psammitic unit or be a lateral facies equivalent of the latter. No fossils have been recovered from the Gander Group. The GRUB is a terrain of mafic and ultramafic plutonic rocks with minor pillow lava and plagiogranite. It is interpreted to be a dismembered ophiolite in thrust contact with the Gander Group. The westernmost Davidsville Group consists of a basal conglomerate, believed deposited unconformably upon the GRUB from which it was derived, and an upper unit of greywacke and slate, mostly of turbidite origin, with minor limestone and calcareous sandstone. The limestone, which lies near the base of the unit, contains Upper Llanvirn to Lower Llandeilo fossils. The Gander and Davidsville Groups display distinctly different sedimentological , structural and metamorphic histories. The Gander Group consists of quartz-rich, relatively mature sediment. It has suffered three pre-Llanvirn deformations, of which the main deformation, Dp produced a major, NE-N-facing recumbent anticline in the southern part of the study area. Middle greenschist conditions existed from D^ to D- with growth of metamorphic minerals during each dynamic and static phase. In contrast, the mineralogically immature Davidsville Group sediment contains abundant mafic and ultramafic detritus which is absent from the Gander Group. The Davidsville Group displays the effects of a single penetrative deformation with localized D_ and D_ features, all of which can be shown to postdate D_ in the Gander Group. Rotation of the flat Gander S- into a subvertical orientation near the contact with the GRUB and the Davidsville Group is believed to be a Davidsville D^ feature. Regional metamorphism in the Davidsville Group is lower greenschist with a single growth phase, MS . These sedimentological, structural and metamorphic differences between the Gander and Davidsville Groups persist even where the GRUB is absent and the two units are in contact, indicating that the tectonic histories of the Gander and Davidsville Groups are distinctly different. Structural features in the GRUB, locally the result of multiple deformations, may be the result of Gander and/or Davidsville deformations. Metamorphism is in the greenschist facies. Geochemical analyses of the pillow lava suggest that these rocks were formed in a back-arc basin. Mafic intrusives in the Gander Group appear to be the result of magraatism separate from that producing the pillow lava. The Gander Group is interpreted to be a continental rise prism deposited on the eastern margin of the Late Precambrian-Lower Paleozoic lapetus Ocean. The GRUB, oceanic crust possibly formed in a marginal basin to the west, is believed to have been thrust eastward over the Gander Group, deforming the latter, during the pre-Llanvirnian, possibly Precambrian, Ganderian Orogeny. The Middle Ordovician and younger Davidsville Group was derived from, and deposited unconformably on, this deformed terrain. Deformation of the Davidsville Group occurred during the Middle Devonian Acadian Orogeny.
Resumo:
Interior layered deposits within an embayment in the northern as well as near the southern wall of Coprates Chasma in the Valles Marineris, Mars are studied using HRSC, CTX, HiRISE and CRISM data. In the northern embayment, layered deposits outcrop in three separate locations (a western deposit, a central deposit and an eastern deposit). The central layered deposit in the north has a stratigraphic thickness of 2 km. The western layered deposit abuts against the chasma wall appearing to have a relatively un-eroded depositional surface. The eastern deposit is near a landslide scar which appears to have exposed basement layering showing downward displacement. This northern embayment is suggested to have been an ancestral basin. The triangular edged deposit near the southern wall of Coprates Chasma has an elongated mound protruding from the central edge and is suggested to be the outer limits of a fault block which is back rotated 6° south. The rotation may be the result of the Valles Marineris opening.
Resumo:
The primary aim of the present study is to acquire a large amount of gravity data, to prepare gravity maps and interpret the data in terms of crustal structure below the Bavali shear zone and adjacent regions of northern Kerala. The gravity modeling is basically a tool to obtain knowledge of the subsurface extension of the exposed geological units and their structural relationship with the surroundings. The study is expected to throw light on the nature of the shear zone, crustal configuration below the high-grade granulite terrain and the tectonics operating during geological times in the region. The Bavali shear is manifested in the gravity profiles by a steep gravity gradient. The gravity models indicate that the Bavali shear coincides with steep plane that separates two contrasting crustal densities extending beyond a depth of 30 km possibly down to Moho, justifying it to be a Mantle fault. It is difficult to construct a generalized model of crustal evolution in terms of its varied manifestations using only the gravity data. However, the data constrains several aspects of crustal evolution and provides insights into some of the major events.