959 resultados para Structural Stability
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
A new derivation of Euler's Elastica with transverse shear effects included is presented. The elastic potential energy of bending and transverse shear is set up. The work of the axial compression force is determined. The equation of equilibrium is derived using the variation of the total potential. Using substitution of variables an exact solution is derived. The equation is transcendental and does not have a closed form solution. It is evaluated in a dimensionless form by using a numerical procedure. Finally, numerical examples of laminates made of composite material (fiber reinforced) and sandwich panels are provided.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Improving the charge capacity, electrochemical reversibility and stability of anode materials are main challenges for the development of Ni-based rechargeable batteries and devices. The combination of cobalt, as additive, and electrode material nanostructuration revealed a very promising approach for this purpose. The new alpha-NiCo mixed hydroxide based electrodes exhibited high specific charge/discharge capacity (355-714 C g(-1)) and outstanding structural stability, withstanding up to 700 redox cycles without any significant phase transformation, as confirmed by cyclic voltammetry, electrochemical quartz crystal microbalance and X-ray diffractometry. In short, the nanostructured alpha-NiCo mixed hydroxide materials possess superior electrochemical properties and stability, being strong candidates for application in high performance batteries and devices. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Background: Antigen B (AgB) is the major protein secreted by the Echinococcus granulosus metacestode and is involved in key host-parasite interactions during infection. The full comprehension of AgB functions depends on the elucidation of several structural aspects that remain unknown, such as its subunit composition and oligomeric states. Methodology/Principal Findings: The subunit composition of E. granulosus AgB oligomers from individual bovine and human cysts was assessed by mass spectrometry associated with electrophoretic analysis. AgB8/1, AgB8/2, AgB8/3 and AgB8/4 subunits were identified in all samples analyzed, and an AgB8/2 variant (AgB8/2v8) was found in one bovine sample. The exponentially modified protein abundance index (emPAI) was used to estimate the relative abundance of the AgB subunits, revealing that AgB8/1 subunit was relatively overrepresented in all samples. The abundance of AgB8/3 subunit varied between bovine and human cysts. The oligomeric states formed by E. granulosus AgB and recombinant subunits available, rAgB8/1, rAgB8/2 and rAgB8/3, were characterized by native PAGE, light scattering and microscopy. Recombinant subunits showed markedly distinct oligomerization behaviors, forming oligomers with a maximum size relation of rAgB8/3 >rAgB8/2>rAgB8/1. Moreover, the oligomeric states formed by rAgB8/3 subunit were more similar to those observed for AgB purified from hydatid fluid. Pressure-induced dissociation experiments demonstrated that the molecular assemblies formed by the more aggregative subunits, rAgB8/2 and rAgB8/3, also display higher structural stability. Conclusions/Significance: For the first time, AgB subunit composition was analyzed in samples from single hydatid cysts, revealing qualitative and quantitative differences between samples. We showed that AgB oligomers are formed by different subunits, which have distinct abundances and oligomerization properties. Overall, our findings have significantly contributed to increase the current knowledge on AgB expression and structure, highlighting issues that may help to understand the parasite adaptive response during chronic infection.
Resumo:
Let N = {y > 0} and S = {y < 0} be the semi-planes of R-2 having as common boundary the line D = {y = 0}. Let X and Y be polynomial vector fields defined in N and S, respectively, leading to a discontinuous piecewise polynomial vector field Z = (X, Y). This work pursues the stability and the transition analysis of solutions of Z between N and S, started by Filippov (1988) and Kozlova (1984) and reformulated by Sotomayor-Teixeira (1995) in terms of the regularization method. This method consists in analyzing a one parameter family of continuous vector fields Z(epsilon), defined by averaging X and Y. This family approaches Z when the parameter goes to zero. The results of Sotomayor-Teixeira and Sotomayor-Machado (2002) providing conditions on (X, Y) for the regularized vector fields to be structurally stable on planar compact connected regions are extended to discontinuous piecewise polynomial vector fields on R-2. Pertinent genericity results for vector fields satisfying the above stability conditions are also extended to the present case. A procedure for the study of discontinuous piecewise vector fields at infinity through a compactification is proposed here.
Resumo:
Staphylococcus aureus TenA (SaTenA) is a thiaminase type II enzyme that catalyzes the deamination of aminopyrimidine, as well as the cleavage of thiamine into 4-amino-5-hydroxymethyl-2-methylpyrimidine (HMP) and 5-(2-hydroxyethyl)-4-methylthiazole (THZ), within thiamine (vitamin B1) metabolism. Further, by analogy with studies of Bacillus subtilis TenA, SaTenA may act as a regulator controlling the secretion of extracellular proteases such as the subtilisin type of enzymes in bacteria. Thiamine biosynthesis has been identified as a potential drug target of the multi-resistant pathogen S. aureus and therefore all enzymes involved in the S. aureus thiamine pathway are presently being investigated in detail. Here, the structure of SaTenA, determined by molecular replacement and refined at 2.7 A ° resolution to an R factor of 21.6% with one homotetramer in the asymmetric unit in the orthorhombic space group P212121, is presented. The tetrameric state of wild-type (WT) SaTenA was postulated to be the functional biological unit and was confirmed by small-angle X-ray scattering (SAXS) experiments in solution. To obtain insights into structural and functional features of the oligomeric SaTenA, comparative kinetic investigations as well as experiments analyzing the structural stability of the WT SaTenA tetramer versus a monomeric SaTenA mutant were performed.
Resumo:
Today, health problems are likely to have a complex and multifactorial etiology, whereby psychosocial factors interact with behaviour and bodily responses. Women generally report more health problems than men. The present thesis concerns the development of women’s health from a subjective and objective perspective, as related to psychosocial living conditions and physiological stress responses. Both cross-sectional and longitudinal studies were carried out on a representative sample of women. Data analysis was based on a holistic person-oriented approach as well as a variable approach. In Study I, the women’s self-reported symptoms and diseases as well as self-rated general health status were compared to physician-rated health problems and ratings of the general health of the women, based on medical examinations. The findings showed that physicians rated twice as many women as having poor health compared to the ratings of the women themselves. Moreover, the symptom ”a sense of powerlessness” had the highest predictive power for self-rated general health. Study II investigated individual and structural stability in symptom profiles between adolescence and middle-age as related to pubertal timing. There was individual stability in symptom reporting for nearly thirty years, although the effect of pubertal timing on symptom reporting did not extend into middle-age. Study III explored the longitudinal and current influence of socioeconomic and psychosocial factors on women’s self-reported health. Contemporary factors such as job strain, low income, financial worries, and double exposure in terms of high job strain and heavy domestic responsibilities increased the risk for poor self-reported health in middle-aged women. In Study IV, the association between self-reported symptoms and physiological stress responses was investigated. Results revealed that higher levels of medically unexplained symptoms were related to higher levels of cortisol, cholesterol, and heart rate. The empirical findings are discussed in relation to existing models of stress and health, such as the demand-control model, the allostatic load model, the biopsychosocial model, and the multiple role hypothesis. It was concluded that women’s health problems could be reduced if their overall life circumstances were improved. The practical implications of this might include a redesign of the labour market giving women more influence and control over their lives, both at and away from work.
Resumo:
Object of this thesis has been centrifuge modelling of earth reinforced retaining walls with modular blocks facing in order to investigate on the influence of design parameters, such as length and vertical spacing of reinforcement, on the behaviour of the structure. In order to demonstrate, 11 models were tested, each one with different length of reinforcement or spacing. Each model was constructed and then placed in the centrifuge in order to artificially raise gravitational acceleration up to 35 g, reproducing the soil behaviour of a 5 metre high wall. Vertical and horizontal displacements were recorded by means of a special device which enabled tracking of deformations in the structure along its longitudinal cross section, essentially drawing its deformed shape. As expected, results confirmed reinforcement parameters to be the governing factor in the behaviour of earth reinforced structures since increase in length and spacing improved structural stability. However, the influence of the length was found out to be the leading parameter, reducing facial deformations up to five times, and the spacing playing an important role especially in unstable configurations. When failure occurred, failure surface was characterised by the same shape (circular) and depth, regardless of the reinforcement configuration. Furthermore, results confirmed the over-conservatism of codes, since models with reinforcement layers 0.4H long showed almost negligible deformations. Although the experiments performed were consistent and yielded replicable results, further numerical modelling may allow investigation on other issues, such as the influence of the reinforcement stiffness, facing stiffness and varying backfills.
Resumo:
Streptococcus agalactiae, also known as Group B Streptococcus (GBS) is the primary colonizer of the anogenital mucosa of up to 40% of healthy women and an important cause of invasive neonatal infections worldwide. Among the 10 known capsular serotypes, GBS type III accounts for 30-76% of the cases of neonatal meningitis. Biofilms are dense aggregates of surface-adherent microorganisms embedded in an exopolysaccharide matrix. Centers for Disease Control and Prevention estimate that 65% of human bacterial infections involve biofilms (Post et al., 2004). In recent years, the ability of GBS to form biofilm attracted attention for its possible role in fitness and/or virulence. Here, a new in vitro biofilm formation protocol was developed to guarantee more stringent conditions, to better discriminate between strong-, low- and non- biofilm forming strains and reduce ambiguous data interpretation. This protocol was applied to screen the in vitro biofilm formation ability of more than 350 GBS clinical isolates from pregnant women and neonatal infections belonging to different serotype, in relation to media composition and pH. The results showed the enhancement of GBS biofilm formation in acidic condition and identified a subset of isolates belonging to serotypes III and V that forms strong biofilms in these conditions. Interestingly, the best biofilm formers belonged to the serotype III hypervirulent clone ST-17.It was also found that pH 5.0 induces down-regulation of the capsule but that this reduction is not enough by itself to ensure biofilm formation. Moreover, the ability of proteinase K to strongly inhibit biofilm formation and to disaggregate mature biofilms suggested that proteins play an essential role in promoting GBS biofilm formation and contribute to the biofilm structural stability. Finally, a set of proteins potentially expressed during the GBS in vitro biofilm formation were identified by mass spectrometry.
Resumo:
Wein ist eine komplexe Lösung bestehend aus verschiedensten Komponenten wie Alkohol, Polyphenolen, Polysacchariden, Sulfiten und auch Proteinen. Auch wenn Proteine nur in geringen Mengen im Wein enthalten sind, beeinflussen sie die Qualität maßgeblich. Hier ist zum einen deren potentielle Unverträglichkeit bis hin zur Allergie zu nennen, und zum anderen der Einfluss der Weinproteine auf die Trübung. Im Rahmen einer epidemiologischen Studie der Arbeitsgruppe Fronk/Decker wurde festgestellt, dass es in der Weinregion Mainz ein starkes Interesse gibt die Ursache einer Weinunverträglichkeit zu untersuchen. Für weiterführende Untersuchungen wurde im Rahmen meiner Arbeit das Lipid Transfer Protein (LTP), welches als einziges Allergen der Traube bekannt ist, aus Trauben und Wein in hohem Reinheitsgrad isoliert. Es konnte gezeigt werden, dass dessen Struktur bei der Weinherstellung nicht maßgeblich verändert wurde. In einer klinischen Studie mit 29 Probanden wurde die potentielle Allergenität von Weinproteinen, im Besonderen des LTPs untersucht. Allerdings konnte bei den untersuchten Probanden keine echte IgE-Antikörper-vermittelte Allergie auf das LTP nachgewiesen werden. Daher wird die Ursache der beschriebenen Unverträglichkeiten bei anderen Weininhaltsstoffen oder auch auf pollenassoziierten Kreuzreaktionen vermutet. Bei der Entstehung einer Weintrübung sind zahlreiche Inhaltstoffe beteiligt. Die Rolle der Proteine ist in diesem Zusammenhang noch nicht abschließend geklärt. In dieser Arbeit wurde die Komplexität der Proteinzusammensetzung in Abhängigkeit von Lage, Jahrgang, Rebsorte sowie Behandlungsmaßnahmen gezeigt. Hinsichtlich der Stabilisierung und Trübungsrelevanz der Weinproteine konnte mittels biochemischer, bioinformatischer und biophysikalischer Methoden gezeigt werden, dass nur ein Teil der im Wein enthaltenen Thaumatin-ähnlichen Proteine und Chitinasen an der Trubbildung beteiligt sind. Die Invertase hingegen denaturiert erst ab einer Temperatur von ca. 83 °C und aggregiert in der Trübung. Somit führt dieses Protein bei Wärmetests zu Bentonitbedarfsermittlung in diesem Temperaturbereich zu einer Überschätzung. Die Versuche zur temperaturabhängigen Aggregation von Proteinen zeigen, wie wichtig die Berücksichtigung der Umgebungsfaktoren bei der Trubbildung ist. So konnten unterschiedliche Wechselwirkungen im Puffer- und realen Weinsystem von potentiell trübungsstabilisierenden Polysacchariden mit den Weinproteinen detektiert werden. Für das Arabinogalactan beispielsweise wurde in den Versuchen im Weinsystem eine destabilisierende Wirkung gefunden, während es bei den Versuchen im Puffersystem eine positive Wirkung auf die Stabilisierung der Probe zeigte. Es zeigte sich, dass die verschiedenen Weininhaltsstoffe in einer komplexen Wechselwirkung zueinander stehen und somit eine molekulare Interpretation erschweren.
Resumo:
Duchenne muscular dystrophy (DMD) is a hereditary X-linked recessive disorder affecting the synthesis of dystrophin, a protein essential for structural stability in muscle. Dystrophin also occurs in the central nervous system, particularly in the neocortex, hippocampus and cerebellum. Quantitative metabolic analysis by localized (1) H MRS was performed in the cerebellum (12 patients and 15 controls) and a temporo-parietal location (eight patients and 15 controls) in patients with DMD and healthy controls to investigate possible metabolic differences. In addition, the site of individual mutations on the dystrophin gene was analyzed and neuropsychological cognitive functions were examined. Cognitive deficits in the patient group were found in line with earlier investigations, mainly concerning verbal short-term memory, visuo-spatial long-term memory and verbal fluency, but also the full-scale IQ. Causal mutations were identified in all patients with DMD. Quantitative MRS showed consistent choline deficits, in both cerebellar white matter and temporo-parietal cortex, as well as small, but significant, metabolic abnormalities for glutamate and total N-acetyl compounds in the temporo-parietal region. Compartment water analysis did not reveal any abnormalities. In healthy subjects, choline levels were age related in the cerebellum. The choline deficit contrasts with earlier findings in DMD, where a surplus of choline was postulated for the cerebellum. In patients, total N-acetyl compounds in the temporo-parietal region were related to verbal IQ and verbal short-term memory. However, choline, the putative main metabolic abnormality, was not found to be associated with cognitive deficits. Furthermore, in contrast with the cognitive performance, the metabolic brain composition did not depend significantly on whether or not gene mutations concerned the expression of the dystrophin isoform Dp140, leading to the conclusion that the effect of the missing Dp140 isoform on cognitive performance is not mediated through the observed metabolite composition, or is caused by local effects beyond the resolution accessible to MRS investigations.
Resumo:
The aim of the study is to contribute to the knowledge and the identification of the main physical and chemical characteristics of the soil that affect the structural stability of soil types forming the soil cover of the plain of Sidi Bel Abbes region for agricultural use by excellence. Structural stability is an indicator of the cohesion of soil aggregates. This is a parameter that expresses the ability of soil aggregates to resist degradation in general the impact of rain or excess water. Measuring the structural stability makes it possible to evaluate the sensitivity a soil crusting and erosion. The results showed that soils subject of our study are stable and very stable with a slight difference. We have a statistical study made it possible to establish a correlation between the structural stability and other physical and chemical soil parameters measured )fersiallitic red soil and brown calcareous soil( such as organic matter content, the rate of total limestone and soil texture, to better explain the stability or instability of the soil structure and to establish a relationship between these parameters and the structural stability. // Keywords: Sidi Bel Abbes, chemical characteristics, physical, structural stability, soil, plain, fersiallitic red soil, brown calcareous soil