878 resultados para Streams conservation
Resumo:
We have presented a new low dissipative kinetic scheme based on a modified Courant Splitting of the molecular velocity through a parameter φ. Conditions for the split fluxes derived based on equilibrium determine φ for a one point shock. It turns out that φ is a function of the Left and Right states to the shock and that these states should satisfy the Rankine-Hugoniot Jump condition. Hence φ is utilized in regions where the gradients are sufficiently high, and is switched to unity in smooth regions. Numerical results confirm a discrete shock structure with a single interior point when the shock is aligned with the grid.
Resumo:
Three conformationally locked fluorinated polycyclitols have been specially crafted on a rigid trans-decalin backbone, employing a surprisingly facile pyridine-poly(hydrogen fluoride)-mediated stereospecific epoxide ring opening as the key reaction. Molecula design of the three fluorinated probes under study focused on providing an efficient platform for (a) evaluating the ability of covalently bonded fluorine, vis-a-vis the isosteric hydroxy group, to act as a H-bond acceptor and (b) examining the possibility for an organic fluorine moiety, placed suitably in a spatially invariant position, to engage an 1,3-diaxial OH functionality in a purported intramolecular O-H center dot center dot center dot F hydrogen bond. The present endeavour reveals that C(sp(3))-F center dot center dot center dot H-C(sp(3)) hydrogen bonds, though weak and lesser investigated, can indeed be observed and supramolecular recognition motifs, involving such interactions, can be conserved even in crystal structures laden with stronger O-H center dot center dot center dot O hydrogen bonds.
Resumo:
Motivated by certain situations in manufacturing systems and communication networks, we look into the problem of maximizing the profit in a queueing system with linear reward and cost structure and having a choice of selecting the streams of Poisson arrivals according to an independent Markov chain. We view the system as a MMPP/GI/1 queue and seek to maximize the profits by optimally choosing the stationary probabilities of the modulating Markov chain. We consider two formulations of the optimization problem. The first one (which we call the PUT problem) seeks to maximize the profit per unit time whereas the second one considers the maximization of the profit per accepted customer (the PAC problem). In each of these formulations, we explore three separate problems. In the first one, the constraints come from bounding the utilization of an infinite capacity server; in the second one the constraints arise from bounding the mean queue length of the same queue; and in the third one the finite capacity of the buffer reflect as a set of constraints. In the problems bounding the utilization factor of the queue, the solutions are given by essentially linear programs, while the problems with mean queue length constraints are linear programs if the service is exponentially distributed. The problems modeling the finite capacity queue are non-convex programs for which global maxima can be found. There is a rich relationship between the solutions of the PUT and PAC problems. In particular, the PUT solutions always make the server work at a utilization factor that is no less than that of the PAC solutions.
Resumo:
Since a majority of residential and industrial building hot water needs are around 50 degrees C, an integrated solar water heater could provide a bulk source that blends collection and storage into one unit. This paper describes the design, construction and performance test results of one such water-heating device. The test unit has an absorber area of 1.3 m(2) and can hold 1701 of water, of which extractable volume per day is 1001. Its performance was evaluated under various typical operating conditions. Every morning at about 7:00 a.m., 1001 of hot water were drawn from the sump and replaced with cold water from the mains. Although, during most of the days, the peak temperatures of water obtained are between 50 and 60 degrees C, the next morning temperatures were lower at 45-50 degrees C. Daytime collection efficiencies of about 60% and overall efficiencies of about 40% were obtained. Tests were conducted with and without stratification. Night radiation losses were reduced by use of a screen insulation.
Resumo:
Three-dimensional (3-D) kinematical conservation laws (KCL) are equations of evolution of a propagating surface Omega(t) in three space dimensions. We start with a brief review of the 3-D KCL system and mention some of its properties relevant to this paper. The 3-D KCL, a system of six conservation laws, is an underdetermined system to which we add an energy transport equation for a small amplitude 3-D nonlinear wavefront propagating in a polytropic gas in a uniform state and at rest. We call the enlarged system of 3-D KCL with the energy transport equation equations of weakly nonlinear ray theory (WNLRT). We highlight some interesting properties of the eigenstructure of the equations of WNLRT, but the main aim of this paper is to test the numerical efficacy of this system of seven conservation laws. We take several initial shapes for a nonlinear wavefront with a suitable amplitude distribution on it and let it evolve according to the 3-D WNLRT. The 3-D WNLRT is a weakly hyperbolic 7 x 7 system that is highly nonlinear. Here we use the staggered Lax-Friedrichs and Nessyahu-Tadmor central schemes and have obtained some very interesting shapes of the wavefronts. We find the 3-D KCL to be suitable for solving many complex problems for which there presently seems to be no other method capable of giving such physically realistic features.
Resumo:
Introduction of agriculture three millennia ago in Peninsular India’s Western Ghats altered substantially ancient tropical forests. Early agricultural communities, nevertheless, strived to attain symbiotic harmony with nature as evident from prevalence of numerous sacred groves, patches of primeval forests sheltering biodiversity and hydrology. Groves enhanced heterogeneity of landscapes involving elements of successional forests and savannas favouring rich wildlife. A 2.25 km2 area of relic forest was studied at Kathalekan in Central Western Ghats. Interspersed with streams studded with Myristica swamps and blended sparingly with shifting cultivation fallows, Kathalekan is a prominent northernmost relic of southern Western Ghat vegetation. Trees like Syzygium travancoricum (Critically Endangered), Myristica magnifica (Endangered) and Gymnacranthera canarica (Vulnerable) and recently reported Semecarpus kathalekanensis, are exclusive to stream/swamp forest (SSF). SSF and non-stream/swamp forest (NSSF) were studied using 18 transects covering 3.6 ha. Dipterocarpaceae, its members seldom transgressing tropical rain forests, dominate SSF (21% of trees) and NSSF (27%). The ancient Myristicaceae ranks high in tree population (19% in SSF and 8% in NSSF). Shannon-Weiner diversity for trees is higher (>3) in six NSSF transects compared to SSF (<3). Higher tree endemism (45%), total endemic tree population (71%) and significantly higher above ground biomass (349 t/ha) cum carbon sequestration potential (131 t/ha) characterizes SSF. Faunal richness is evident from amphibians (35 species - 26 endemics, 11 in IUCN Red List). This study emphasizes the need for bringing to light more of relic forests for their biodiversity, carbon sequestration and hydrology. The lives of marginal farmers and forest tribes can be uplifted through partnership in carbon credits, by involving them in mitigating global climatic change through conservation and restoration of high biomass watershed forests.
Resumo:
System of kinematical conservation laws (KCL) govern evolution of a curve in a plane or a surface in space, even if the curve or the surface has singularities on it. In our recent publication K. R. Arun, P. Prasad, 3-D kinematical conservation laws (KCL): evolution of a surface in R-3-in particular propagation of a nonlinear wavefront, Wave Motion 46 (2009) 293-311] we have developed a mathematical theory to study the successive positions and geometry of a 3-D weakly nonlinear wavefront by adding an energy transport equation to KCL. The 7 x 7 system of equations of this KCL based 3-D weakly nonlinear ray theory (WNLRT) is quite complex and explicit expressions for its two nonzero eigenvalues could not be obtained before. In this short note, we use two different methods: (i) the equivalence of KCL and ray equations and (ii) the transformation of surface coordinates, to derive the same exact expressions for these eigenvalues. The explicit expressions for nonzero eigenvalues are important also for checking stability of any numerical scheme to solve 3-D WNLRT. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
XVIII IUFRO World Congress, Ljubljana 1986.
Resumo:
Indigenous peoples with a historical continuity of resource-use practices often possess a broad knowledge base of the behavior of complex ecological systems in their own localities. This knowledge has accumulated through a long series of observations transmitted from generation to generation. Such ''diachronic'' observations can be of great value and complement the ''synchronic''observations on which western science is based. Where indigenous peoples have depended, for long periods of time, on local environments for the provision of a variety of resources, they have developed a stake in conserving, and in some cases, enhancing, biodiversity. They are aware that biological diversity is a crucial factor in generating the ecological services and natural resources on which they depend. Some indigenous groups manipulate the local landscape to augment its heterogeneity, and some have been found to be motivated to restore biodiversity in degraded landscapes. Their practices for the conservation of biodiversity were grounded in a series of rules of thumb which are apparently arrived at through a trial and error process over a long historical time period. This implies that their knowledge base is indefinite and their implementation involves an intimate relationship with the belief system. Such knowledge is difficult for western science to understand. It is vital, however, that the value of the knowledge-practice-belief complex of indigenous peoples relating to conservation of biodiversity is fully recognized if ecosystems and biodiversity are to be managed sustainably. Conserving this knowledge would be most appropriately accomplished through promoting the community-based resource-management systems of indigenous peoples.
Resumo:
Landscape ecology as a discipline in science is rather young. However its principles appear promising in outlining conservation strategies including a wide range of organisms, particularly birds. Birds due to their mobility use a variety of environmental resources, especially habitats. However, currently these habitats are only available in patches over most of the tropical world. Further whatever is left is under constant human pressure. This paper, therefore, addresses this problem and suggests means of dealing with it using the landscape approach as outlined by landscape ecology. The landscape approach starts with the realization that patches of habitats are open and interact with one another. Corridors of trees along roads, hedgerows and canals in a landscape can aid in the movement of species. Hence the landscape approach considers patches of habitats as interacting elements in the large matrix of the landscape. The landscape approach also integrates concepts. It puts together often debated issues such as whether to preserve maximum species diversity, to maximize representativeness, or to preserve only the valuable species. Based on a case study of the Uttara Kannada district in Karnataka, these oft-opposing views and complications can be dealt with practically and synthesized into a conservation strategy far the diverse avifauna of the Western Chats.
Resumo:
Numerous morphology-based classification schemes have been proposed for langurs and leaf monkeys of South Asia but there is very little agreement between them. An incorrect classification scheme when used as a basis for biogeographic studies can support erroneous hypotheses. Further, lack of taxonomic resolution will also confound conservation efforts, given that conservation biologists use traditional morphology-based-classification schemes to prioritize species for conservation. Here, I have revisited recent molecular phylogenetic studies done on langurs and leaf monkeys of South Asia. Results from these studies are in turn used to derive a rational and scientific basis for prioritizing species for conservation. Molecular data support the classification of langurs of the Indian subcontinent-Hanuman, Nilgiri and purple-faced langurs-in the genus Semnopithecus, whereas Phayre's leaf monkey along with other Southeast Asian leaf monkeys form another distinct clade (Trachypithecus). The phylogenetic position of capped and golden langurs remains unresolved. Molecular data suggest that they are closely related to each other but this group might have evolved through past hybridization between Semnopithecus and Trachypithecus. Additionally, genetic data also support the splitting of the so-called Hanuman langurs into at least three species. The scores for taxonomic uniqueness of langurs and leaf monkeys of South Asia were revised using this molecular phylogeny-based classification. According to the revised scores, Phayres leaf monkey and golden langur are priority species for conservation followed by capped and Nilgiri langurs.