969 resultados para Stimulating Factor
Resumo:
Background The treatment and prognosis of nasal polyposis (NP) may be influenced by transcription factors, but their expression is poorly understood. Objective To determine the expression of transcription factors [(nuclear factor-kappa B) NF-kappa B and (activator protein) AP-1], cytokines [IL-1 beta, TNF-alpha and (granulocytes and macrophage colony-stimulating factor) GM-CSF], growth factor (b-FGF), chemokine (eotaxin-2) and adhesion molecule (ICAM-1) in NP in comparison with nasal mucosa controls. Methods Cross-sectional study. Twenty biopsies of nasal polyps were compared with eight middle turbinate biopsies. p65, c-Fos, IL-1 beta, TNF-alpha, ICAM-1, b-FGF, eotaxin-2 and GM-CSF were analysed through RQ-PCR, and p65 and c-Fos were also analysed through Western blotting. Results NF-kappa B expression was increased in patients with NP when compared with control mucosa (P < 0.05), whereas AP-1 expression did not differ significantly between groups. Expressions of IL-1 beta, eotaxin-2 and b-FGF were also increased in patients with NP compared with controls (P < 0.05). Conclusions The transcription factor NF-kappa B is more expressed in NP than in control mucosa. This is important in NP because NF-kappa B can induce the transcription of cytokines, chemokines and adhesion molecules, which play an important role in the inflammatory process. Moreover, transcription factors influence the response to corticosteroids, which are the basis of NP treatment. Transcription factor AP-1 does not seem to have a significant role in the pathological process.
Resumo:
In this study, we investigated the hematopoietic response of rats pretreated with CV and exposed to the impact of acute escapable, inescapable or psychogenical stress on responsiveness to an in vivo challenge with Listeria monocytogenes. No consistent changes were observed after exposure to escapable footshock. Conversely, the impact of uncontrollable stress (inescapable and psychogenical) was manifested by an early onset and increased severity and duration of myrelossuppression produced by the infection. Small size CFU-CM colonies and increased numbers of clusters were observed, concurrently to a greater expansion in the more mature population of bone marrow granulocytes. No differences were observed between the responses of both uncontrollable stress regimens. CV prevented the myelossuppression caused by stress/infection due to increased numbers of CFU-GM in the bone marrow. Colonies of cells tightly packed, with a very condensed nucleus; in association with a greater expansion in the more immature population of bone marrow granulocytes were observed. Investigation of the production of colony-stimulating factors revealed increased colony-stimulating activity (CSA) in the serum of normal and infected/stressed rats treated with the algae. CV treatment restored/enhanced the changes produced by stress/infection in total and differential bone marrow and peripheral cells counts. Further studies demonstrated that INF-gamma is significantly reduced, whereas IL-10 is significantly increased after exposure to Uncontrollable stress. Treatment with CV significantly increased INF-gamma levels and diminished the levels of IL-10. Uncontrollable stress reduced the protection afforded by CV to a lethal dose of L. monocytogenes, with survival rates being reduced from (50%) in infected rats to 20% in infected/stressed rats. All together, our results suggest Chlorella treatment as an effective tool for the prophylaxis of post-stress myelossupression, including the detrimental effect of stress on the course and outcome of infections. (C) 2008 Elsevier Inc. All rights reserved.
Resumo:
Background and Objective: Oral mucositis is a dose-limiting and painful side effect of radiotherapy (RT) and/or chemotherapy in cancer patients. The purpose of the present study was to analyze the effect of different protocols of laser phototherapy (LPT) on the grade of mucositis and degree of pain in patients under RT. Patients and Methods: Thirty-nine patients were divided into three groups: G1, where the irradiations were done three times a week using low power laser; G2, where combined high and low power lasers were used three time a week; and G3, where patients received low power laser irradiation once a week. The low power LPT was done using an InGaAlP laser (660 nm/40 mW/6 J cm(-2)/0.24 J per point). In the combined protocol, the high power LPT was done using a GaAlAs laser (808 nm, 1 W/cm(2)). Oral mucositis was assessed at each LPT session in accordance to the oral-mucositis scale of the National Institute of the Cancer-Common Toxicity criteria (NIC-CTC). The patient self-assessed pain was measured by means of the visual analogue scale. Results: All protocols of LPT led to the maintenance of oral mucositis scores in the same levels until the last RT session. Moreover, LPT three times a week also maintained the pain levels. However, the patients submitted to the once a week LPT had significant pain increase; and the association of low/high LPT led to increased healing time. Conclusions: These findings are desired when dealing with oncologic patients under RT avoiding unplanned radiation treatment breaks and additional hospital costs. Lasers Surg.Med. 41:264-270,2009. (C) 2009Wiley-Liss, Inc.
Resumo:
Epidermal growth factor (EGF) has been reported to either sensitize or protect cells against ionizing radiation. We report here that EGF increases radiosensitivity in both human fibroblasts and lymphoblasts and down-regulates both ATM (mutated in ataxia-telangiectasia (A-T)) and the catalytic subunit of DNA-dependent protein kinase (DNA-PKcs). No further radiosensitization was observed in A-T cells after pretreatment with EGF. The down-regulation of ATM occurs at the transcriptional level. Concomitant with the down-regulation of ATM, the DNA binding activity of the transcription factor Sp1 decreased. A causal relationship was established between these observations by demonstrating that up-regulation of Sp1 DNA binding activity by granulocyte/macrophage colony-stimulating factor rapidly reversed the EGF-induced decrease in ATM protein and restored radiosensitivity to normal levels. Failure to radiosensitize EGF-treated cells to the same extent as observed for A-T cells can be explained by induction of ATM protein and kinase activity with time post-irradiation. Although ionizing radiation damage to DNA rapidly activates ATM kinase and cell cycle checkpoints, we have provided evidence for the first time that alteration in the amount of ATM protein occurs in response to both EGF and radiation exposure. Taken together these data support complex control of ATM function that has important repercussions for targeting ATM to improve radiotherapeutic benefit.
Resumo:
Background: In severe aplastic anaemia, the treatment of choice for young patients with a human leucocyte antigen-matched sibling is now established as allogeneic bone marrow transplantation (BMT). In older patients and in those without a matched sibling donor, immunosuppressive therapy is the usual first option. 'Alternative' marrow donors are emerging as an option for those without a matched sibling donor. Aims: To review 10 years of local experience in treating severe aplastic anaemia with BMT and immunosuppressive therapy with emphasis on long-term outcomes. Methods: A retrospective analysis was performed of all patients with severe aplastic anaemia presenting to the Royal Brisbane and Royal Children's Hos- pitals between 1989 and 1999. Data were abstracted regarding patient demographics, pretreatment characteristics and outcome measures, including response rates, overall survival and long-term complications. Results: Twenty-seven consecutive patients were identified, 12 treated with immunosuppression alone and 15 with BMT. In these two groups, transfusion independence was attained in 25% and 100%, respectively, with overall survival being 36% and 100%, respectively. Those treated with immunosuppression were significantly older (median 41.5 versus 22 years, P = 0.008). Long-term survivors of either treatment had extremely low morbidity. Three patients carried pregnancies to term post-transplant. Three patients received alternative donor BMT with correspondingly excellent survival. Conclusions: Patients treated with allogeneic BMT for severe aplastic anaemia enjoyed extremely good long-term survival and minimal morbidity. Patients treated with immunosuppressive therapy had a poorer outcome reflecting their older age and different usage of therapies over the past decade. Optimal treatment strategies for severe aplastic anaemia remain to be determined.
Resumo:
Dendritic cells (DC) are now recognised as a unique leukocyte type, consisting of two or more subsets. The origins and functional inter-relationships of these cells are the subject of intense basic scientific investigation. They play important roles in initiating and directing immune responses, defending the host from pathogens and maintaining self tolerance. Fundamental studies are defining new molecules and mechanisms associated with DC function. The first methods for counting these rare blood cell populations are already providing interesting new clinical data. Indeed, abnormal DC function may contribute to deficiencies in the immune response against malignancies. Phase I trial data suggests that DC-based cancer vaccination protocols may contribute an important new biological approach to cancer therapy. Manipulation of DC to facilitate allogeneic transplantation and even to manage autoimmune disease are likely developments.
A highly conserved c-fms gene intronic element controls macrophage-specific and regulated expression
Resumo:
The c fins gene encodes the receptor for macrophage colony-stimulating factor-1. This gene is expressed selectively in the macrophage cell lineage. Previous studies have implicated sequences in intron 2 that control transcript elongation in tissue-specific and regulated expression of c -fms. Four macrophage-specific deoxyribonuclease I (DNase I)-hypersensitive sites (DHSS) were identified within mouse intron 2. Sequences of these DHSS were found to be highly conserved compared with those in the human gene. A 250-bp region we refer to as the fins intronic regulatory element (FIRE), which is even more highly conserved than the c-fins proximal promoter, contains many consensus binding sites for macrophage-expressed transcription factors including Spl, PU.1, and C/EBP. FIRE was found to act as a macrophage-specific enhancer and as a promoter with an antisense orientation preference in transient transfections. In stable transfections of the macrophage line RAW264, as well as in clones selected for high and low-level c -fms mRNA expression, the presence of intron 2 increased the frequency and level of expression of reporter genes compared with those attained using the promoter alone. Removal of FIRE abolished reporter gene expression, revealing a suppressive activity in the remaining intronic sequences. Hence, FIRE is shown to be a key regulatory element in the fins gene.
Resumo:
The fundamental role of dendritic cells (DC in initiating and directing the primary immune response is well established. Furthermore, it is now accepted that DC may be useful in new vaccination strategies for preventing certain malignant and infectious diseases. As blood DC (BDC physiology differs from that of the DC homologues generated in vitro from monocyte precursors, it is becoming more relevant to consider BDC for therapeutic interventions. Until recently, protocols for the isolation of BDC were laborious and inefficient; therefore, their use for investigative cancer immunotherapy is not widespread. In this study, we carefully documented BDC counts, yields and subsets during apheresis (Cobe Spectra), the initial and essential procedure in creating a BDC isolation platform for cancer immunotherapy. We established that an automated software package (Version 6,0 AutoPBPC) provides an operator-independent reliable source of motionuclear cells (MNC for BDC preparation. Further, we observed that BDC might be recovered in high yields, often greater than 100% relative to the number of circulating BDC predicted by blood volume. An average of 66 million (range, 17-179) BDC per 10-1 procedure were obtained, largely satisfying the needs for immunization. Higher yields were possible on total processed blood volumes of 151. BDC were not activated by the isolation procedure and, more importantly, both BDC subsets (CD11c(+)CD123(low) and CD11c(-)CD123(high)) were equally represented. Finally, we established that the apheresis product could be used for antibody-based BDC immunoselection and demonstrated that fully functional BDC can be obtained by this procedure. (C) 2002 Published by Elsevier Science B.V.
Resumo:
Objectives. Long-term, low-dose macrolide therapy is effective in the treatment of chronic rhinosinusitis. The mechanism of its anti-inflammatory effect and how this differs from corticosteroids remains unclear. The effect of clarithromycin and prednisolone on interleukin-5, interleukin-8, and granulocyte-macrophage colony-stimulating factor production by cultured chronic sinusitis nasal mucosa was examined in the study. Study Design and Methods. Nasal mucosa was obtained from 11 patients with chronic sinusitis. This tissue was cultured for 24 hours in the presence of clarithromycin or prednisolone at a variety of concentrations. Cytokine levels were determined by enzyme-linked immunoassay. Results. Clarithromycin and prednisolone each produced significant reductions in interleukin-5, interleukin-8, and granulocyte-macrophage colony-stimulating factor production. There was no significant difference between the effects of clarithromycin and prednisolone. Conclusion: Macrolide antibiotics are capable of inhibiting pro-inflammatory cytokine production in vitro and are as potent as prednisolone. This mechanism is likely to be at least partly responsible for the clinical efficacy of macrolide antibiotics in chronic rhinosinusitis. Key Words. Macrolide, prednisolone, sinusitis, enzyme-linked immunosorbent assay, cytokine.
Resumo:
Studies on purified blood dendritic cells (DCs) are hampered by poor viability in tissue culture. We, therefore, attempted to study some of the interactions/relationships between DCs and other blood cells by culturing unseparated peripheral blood mononuclear cell (PBMC) preparations in vitro. Flow cytometric techniques were used to undertake a phenotypic and functional analysis of DCs within the cultured PBMC population. We discovered that both the CD11c(+) and CD11c(-) CD123(hi) DC subsets maintained their viability throughout the 3-day culture period, without the addition of exogenous cytokines. This viability was accompanied by progressive up-regulation of the surface costimulatory (CD40, CD80, CD86) and activation (CMRF-44, CMRF-56, CD83) molecules. The survival and apparent production of DCs in PBMC culture (without exogenous cytokines) and that of sorted DCs (with cytokines) were evaluated and compared by using TruCOUNT analysis. Absolute DC counts increased (for CD123hi and CD11c+ subsets) after overnight culture of PBMCs. Single-cell lineage depletion experiments demonstrated the rapid and spontaneous emergence of new in vitro generated DCs from CD14(+)/CD16(+) PBMC radioresistant precursors, additional to the preexisting ex vivo DC population. Unlike monocyte-derived DCs, blood DCs increased dextran uptake with culture and activation. Finally, DCs obtained after culture of PBMCs for 3 days were as effective as freshly isolated DCs in stimulating an allogeneic mixed leukocyte reaction. (C) 2002 by The American Society of Hematology.
Resumo:
The mononuclear phagocyte system (MPS) was defined as a family of cells comprising bone marrow progenitors, blood monocytes, and tissue macrophages. In this review, we briefly consider markers for cells of this lineage in the mouse, especially the F4/80 surface antigen and the receptor for macrophage colony-stimulating factor. The concept of the MPS is challenged by evidence that there is a separate embryonic phagocyte lineage, the blurring of the boundaries between macrophages and other cells types arising from phenotypic plasticity and transdifferentiation, and evidence of local renewal of tissue macrophage populations as opposed to monocyte recruitment. Nevertheless, there is a unity to cells of the MPS suggested by their location, morphology, and shared markers. We discuss the origins of macrophage heterogeneity and argue that macrophages and antigen-representing dendritic cells are closely related and part of the MPS.
Resumo:
O rim demonstra uma capacidade singular em reparar-se após danos locais, no entanto, depois de acometido, as chances de desenvolvimento de lesões renais elevam-se. A patofisiologia da isquemia/reperfusão (IR) é complexa porque há ocorrência simultânea de danos celulares e inflamação. O decréscimo na quantidade de oxigênio requer um sistema capaz de evitar seus efeitos prejudiciais e uma maquinaria molecular HIF (Hypoxia Inducible Factor), um complexo, atua como fator de transcrição de diversos genes desde os da regulação da proliferação celular e apoptose até a sinalização para angiogênese. O Fator Estimulador de Colônia de Granulócitos (G-CSF) é uma glicoproteína conhecida pela sua capacidade de promover a sobrevivência, proliferação e diferenciação de células estimulando a recuperação aos efeitos advindos da IR. Com o intuito de observar as influências dessas proteínas foi realizada uma análise semi-quantitativa de amostras renais submetidas ou não à IR, usando-se descrições microscópicas morfológicas e imunohistoquímicas, com os cálculos e gráficos estatísticos foram feitos no software GraphPad Prism®. Das análises morfológicas, constatou-se que as lesões características de IR foram observadas em espécimes não tratados: bolhas em epitélio tubular; vacuolização citoplasmática, distalização tubular e congestão luminal. De forma análoga, foi encontrada nos tratados, contudo em estágios menos avançados e em animais controle, não foi houve esta diferença tissular. As análises de microscopia eletrônica demonstraram alteração na barreira filtrante com concomitante perda de outras características glomerulares. Aos animais controle foi observada a arquitetura típica, ao passo que para os animais tratados notou-se conservação da barreira. A presença de HIF-1α nos rins contralaterais demonstrouse significante quando comparadas às amostras isquêmicas e tratadas (p<0,05). Já a ocorrência da mesma proteína em rins isquêmicos não apresentou qualquer diferença. Analisando-se a proteína VEGF foi comprovado que em rins contralaterais não há diferença estatística, contudo nos rins esquerdos há significância entre os três grupos (p<0,05). Já a correlação entre estas duas proteínas não se mostrou estatisticamente significante. Em relação às atividades de proliferação e morte celulares, todos os três grupos foram significantes entre si (p<0,05). Ao que concerne o tratamento, foi demonstrada a atividade protetora do medicamento e uma possível interação molecular com a HIF, enquanto que a ativação desta proteína corrobora sua rota metabólica já previamente descrita.
Resumo:
IntroductionPurpureocillium lilacinum is emerging as a causal agent of hyalohyphomycosis that is refractory to antifungal drugs; however, the pathogenic mechanisms underlying P. lilacinum infection are not understood. In this study, we investigated the interaction of P. lilacinum conidia with human macrophages and dendritic cells in vitro.MethodsSpores of a P. lilacinum clinical isolate were obtained by chill-heat shock. Mononuclear cells were isolated from eight healthy individuals. Monocytes were separated by cold aggregation and differentiated into macrophages by incubation for 7 to 10 days at 37°C or into dendritic cells by the addition of the cytokines human granulocyte-macrophage colony stimulating factor and interleukin-4. Conidial suspension was added to the human cells at 1:1, 2:1, and 5:1 (conidia:cells) ratios for 1h, 6h, and 24h, and the infection was evaluated by Giemsa staining and light microscopy.ResultsAfter 1h interaction, P. lilacinum conidia were internalized by human cells and after 6h contact, some conidia became inflated. After 24h interaction, the conidia produced germ tubes and hyphae, leading to the disruption of macrophage and dendritic cell membranes. The infection rate analyzed after 6h incubation of P. lilacinumconidia with cells at 2:1 and 1:1 ratios was 76.5% and 25.5%, respectively, for macrophages and 54.3% and 19.5%, respectively, for cultured dendritic cells.ConclusionsP. lilacinum conidia are capable of infecting and destroying both macrophages and dendritic cells, clearly demonstrating the ability of this pathogenic fungus to invade human phagocytic cells.