921 resultados para Statistical Pattern Recognition
Resumo:
Fetal MRI reconstruction aims at finding a high-resolution image given a small set of low-resolution images. It is usually modeled as an inverse problem where the regularization term plays a central role in the reconstruction quality. Literature has considered several regularization terms s.a. Dirichlet/Laplacian energy, Total Variation (TV)- based energies and more recently non-local means. Although TV energies are quite attractive because of their ability in edge preservation, standard explicit steepest gradient techniques have been applied to optimize fetal-based TV energies. The main contribution of this work lies in the introduction of a well-posed TV algorithm from the point of view of convex optimization. Specifically, our proposed TV optimization algorithm or fetal reconstruction is optimal w.r.t. the asymptotic and iterative convergence speeds O(1/n2) and O(1/√ε), while existing techniques are in O(1/n2) and O(1/√ε). We apply our algorithm to (1) clinical newborn data, considered as ground truth, and (2) clinical fetal acquisitions. Our algorithm compares favorably with the literature in terms of speed and accuracy.
Resumo:
Dissolved organic matter (DOM) is a complex mixture of organic compounds, ubiquitous in marine and freshwater systems. Fluorescence spectroscopy, by means of Excitation-Emission Matrices (EEM), has become an indispensable tool to study DOM sources, transport and fate in aquatic ecosystems. However the statistical treatment of large and heterogeneous EEM data sets still represents an important challenge for biogeochemists. Recently, Self-Organising Maps (SOM) has been proposed as a tool to explore patterns in large EEM data sets. SOM is a pattern recognition method which clusterizes and reduces the dimensionality of input EEMs without relying on any assumption about the data structure. In this paper, we show how SOM, coupled with a correlation analysis of the component planes, can be used both to explore patterns among samples, as well as to identify individual fluorescence components. We analysed a large and heterogeneous EEM data set, including samples from a river catchment collected under a range of hydrological conditions, along a 60-km downstream gradient, and under the influence of different degrees of anthropogenic impact. According to our results, chemical industry effluents appeared to have unique and distinctive spectral characteristics. On the other hand, river samples collected under flash flood conditions showed homogeneous EEM shapes. The correlation analysis of the component planes suggested the presence of four fluorescence components, consistent with DOM components previously described in the literature. A remarkable strength of this methodology was that outlier samples appeared naturally integrated in the analysis. We conclude that SOM coupled with a correlation analysis procedure is a promising tool for studying large and heterogeneous EEM data sets.
Resumo:
Dissolved organic matter (DOM) is a complex mixture of organic compounds, ubiquitous in marine and freshwater systems. Fluorescence spectroscopy, by means of Excitation-Emission Matrices (EEM), has become an indispensable tool to study DOM sources, transport and fate in aquatic ecosystems. However the statistical treatment of large and heterogeneous EEM data sets still represents an important challenge for biogeochemists. Recently, Self-Organising Maps (SOM) has been proposed as a tool to explore patterns in large EEM data sets. SOM is a pattern recognition method which clusterizes and reduces the dimensionality of input EEMs without relying on any assumption about the data structure. In this paper, we show how SOM, coupled with a correlation analysis of the component planes, can be used both to explore patterns among samples, as well as to identify individual fluorescence components. We analysed a large and heterogeneous EEM data set, including samples from a river catchment collected under a range of hydrological conditions, along a 60-km downstream gradient, and under the influence of different degrees of anthropogenic impact. According to our results, chemical industry effluents appeared to have unique and distinctive spectral characteristics. On the other hand, river samples collected under flash flood conditions showed homogeneous EEM shapes. The correlation analysis of the component planes suggested the presence of four fluorescence components, consistent with DOM components previously described in the literature. A remarkable strength of this methodology was that outlier samples appeared naturally integrated in the analysis. We conclude that SOM coupled with a correlation analysis procedure is a promising tool for studying large and heterogeneous EEM data sets.
Resumo:
Peer-reviewed
Resumo:
Phase encoded nano structures such as Quick Response (QR) codes made of metallic nanoparticles are suggested to be used in security and authentication applications. We present a polarimetric optical method able to authenticate random phase encoded QR codes. The system is illuminated using polarized light and the QR code is encoded using a phase-only random mask. Using classification algorithms it is possible to validate the QR code from the examination of the polarimetric signature of the speckle pattern. We used Kolmogorov-Smirnov statistical test and Support Vector Machine algorithms to authenticate the phase encoded QR codes using polarimetric signatures.
Resumo:
Behavior-based navigation of autonomous vehicles requires the recognition of the navigable areas and the potential obstacles. In this paper we describe a model-based objects recognition system which is part of an image interpretation system intended to assist the navigation of autonomous vehicles that operate in industrial environments. The recognition system integrates color, shape and texture information together with the location of the vanishing point. The recognition process starts from some prior scene knowledge, that is, a generic model of the expected scene and the potential objects. The recognition system constitutes an approach where different low-level vision techniques extract a multitude of image descriptors which are then analyzed using a rule-based reasoning system to interpret the image content. This system has been implemented using a rule-based cooperative expert system
Resumo:
We describe a model-based objects recognition system which is part of an image interpretation system intended to assist autonomous vehicles navigation. The system is intended to operate in man-made environments. Behavior-based navigation of autonomous vehicles involves the recognition of navigable areas and the potential obstacles. The recognition system integrates color, shape and texture information together with the location of the vanishing point. The recognition process starts from some prior scene knowledge, that is, a generic model of the expected scene and the potential objects. The recognition system constitutes an approach where different low-level vision techniques extract a multitude of image descriptors which are then analyzed using a rule-based reasoning system to interpret the image content. This system has been implemented using CEES, the C++ embedded expert system shell developed in the Systems Engineering and Automatic Control Laboratory (University of Girona) as a specific rule-based problem solving tool. It has been especially conceived for supporting cooperative expert systems, and uses the object oriented programming paradigm
Resumo:
The condensation rate has to be high in the safety pressure suppression pool systems of Boiling Water Reactors (BWR) in order to fulfill their safety function. The phenomena due to such a high direct contact condensation (DCC) rate turn out to be very challenging to be analysed either with experiments or numerical simulations. In this thesis, the suppression pool experiments carried out in the POOLEX facility of Lappeenranta University of Technology were simulated. Two different condensation modes were modelled by using the 2-phase CFD codes NEPTUNE CFD and TransAT. The DCC models applied were the typical ones to be used for separated flows in channels, and their applicability to the rapidly condensing flow in the condensation pool context had not been tested earlier. A low Reynolds number case was the first to be simulated. The POOLEX experiment STB-31 was operated near the conditions between the ’quasi-steady oscillatory interface condensation’ mode and the ’condensation within the blowdown pipe’ mode. The condensation models of Lakehal et al. and Coste & Lavi´eville predicted the condensation rate quite accurately, while the other tested ones overestimated it. It was possible to get the direct phase change solution to settle near to the measured values, but a very high resolution of calculation grid was needed. Secondly, a high Reynolds number case corresponding to the ’chugging’ mode was simulated. The POOLEX experiment STB-28 was chosen, because various standard and highspeed video samples of bubbles were recorded during it. In order to extract numerical information from the video material, a pattern recognition procedure was programmed. The bubble size distributions and the frequencies of chugging were calculated with this procedure. With the statistical data of the bubble sizes and temporal data of the bubble/jet appearance, it was possible to compare the condensation rates between the experiment and the CFD simulations. In the chugging simulations, a spherically curvilinear calculation grid at the blowdown pipe exit improved the convergence and decreased the required cell count. The compressible flow solver with complete steam-tables was beneficial for the numerical success of the simulations. The Hughes-Duffey model and, to some extent, the Coste & Lavi´eville model produced realistic chugging behavior. The initial level of the steam/water interface was an important factor to determine the initiation of the chugging. If the interface was initialized with a water level high enough inside the blowdown pipe, the vigorous penetration of a water plug into the pool created a turbulent wake which invoked the chugging that was self-sustaining. A 3D simulation with a suitable DCC model produced qualitatively very realistic shapes of the chugging bubbles and jets. The comparative FFT analysis of the bubble size data and the pool bottom pressure data gave useful information to distinguish the eigenmodes of chugging, bubbling, and pool structure oscillations.
Resumo:
The problem of automatic recognition of the fish from the video sequences is discussed in this Master’s Thesis. This is a very urgent issue for many organizations engaged in fish farming in Finland and Russia because the process of automation control and counting of individual species is turning point in the industry. The difficulties and the specific features of the problem have been identified in order to find a solution and propose some recommendations for the components of the automated fish recognition system. Methods such as background subtraction, Kalman filtering and Viola-Jones method were implemented during this work for detection, tracking and estimation of fish parameters. Both the results of the experiments and the choice of the appropriate methods strongly depend on the quality and the type of a video which is used as an input data. Practical experiments have demonstrated that not all methods can produce good results for real data, whereas on synthetic data they operate satisfactorily.
Resumo:
The chemical composition of apple juices may be used to discriminate between the varieties for consumption and those for raw material. Fuji and Gala have a chemical pattern that can be used for this classification. Multivariate methods correlate independent continuous chemical descriptors with the categorical apple variety. Three main descriptors of apple juice were selected: malic acid, total reducing sugar and total phenolic compounds. A chemometric approach, employing PCA and SIMCA, was used to classify apple juice samples. PCA was performed with 24 juices from Fuji and Gala, and SIMCA, with 15 juices. The exploratory and predictive models recognized 88% and 64%, respectively, as belonging to a mixed domain. The apple juice from commercial fruits shows a pattern related to cv. Fuji and Gala with boundaries from 0.18 to 0.389 g.100 mL-1 (malic acid), from 8.65 to 15.18 g.100 mL-1 (total reducing sugar) and from 100 to 400 mg.L-1 (total phenolic compounds), but such boundaries were slightly shorter in the remaining set of commercial apple juices, specifically from 0.16 to 0.36 g.100 mL-1, from 9.25 to 15.5 g.100 mL-1 and from 180 to 606 mg.L-1 for acidity, reducing sugar and phenolic compounds, respectively, representing the acid, sweet and bitter tastes.
Resumo:
During 1990's the Wavelet Transform emerged as an important signal processing tool with potential applications in time-frequency analysis and non-stationary signal processing.Wavelets have gained popularity in broad range of disciplines like signal/image compression, medical diagnostics, boundary value problems, geophysical signal processing, statistical signal processing,pattern recognition,underwater acoustics etc.In 1993, G. Evangelista introduced the Pitch- synchronous Wavelet Transform, which is particularly suited for pseudo-periodic signal processing.The work presented in this thesis mainly concentrates on two interrelated topics in signal processing,viz. the Wavelet Transform based signal compression and the computation of Discrete Wavelet Transform. A new compression scheme is described in which the Pitch-Synchronous Wavelet Transform technique is combined with the popular linear Predictive Coding method for pseudo-periodic signal processing. Subsequently,A novel Parallel Multiple Subsequence structure is presented for the efficient computation of Wavelet Transform. Case studies also presented to highlight the potential applications.
Resumo:
Speech is the most natural means of communication among human beings and speech processing and recognition are intensive areas of research for the last five decades. Since speech recognition is a pattern recognition problem, classification is an important part of any speech recognition system. In this work, a speech recognition system is developed for recognizing speaker independent spoken digits in Malayalam. Voice signals are sampled directly from the microphone. The proposed method is implemented for 1000 speakers uttering 10 digits each. Since the speech signals are affected by background noise, the signals are tuned by removing the noise from it using wavelet denoising method based on Soft Thresholding. Here, the features from the signals are extracted using Discrete Wavelet Transforms (DWT) because they are well suitable for processing non-stationary signals like speech. This is due to their multi- resolutional, multi-scale analysis characteristics. Speech recognition is a multiclass classification problem. So, the feature vector set obtained are classified using three classifiers namely, Artificial Neural Networks (ANN), Support Vector Machines (SVM) and Naive Bayes classifiers which are capable of handling multiclasses. During classification stage, the input feature vector data is trained using information relating to known patterns and then they are tested using the test data set. The performances of all these classifiers are evaluated based on recognition accuracy. All the three methods produced good recognition accuracy. DWT and ANN produced a recognition accuracy of 89%, SVM and DWT combination produced an accuracy of 86.6% and Naive Bayes and DWT combination produced an accuracy of 83.5%. ANN is found to be better among the three methods.
Resumo:
On-line handwriting recognition has been a frontier area of research for the last few decades under the purview of pattern recognition. Word processing turns to be a vexing experience even if it is with the assistance of an alphanumeric keyboard in Indian languages. A natural solution for this problem is offered through online character recognition. There is abundant literature on the handwriting recognition of western, Chinese and Japanese scripts, but there are very few related to the recognition of Indic script such as Malayalam. This paper presents an efficient Online Handwritten character Recognition System for Malayalam Characters (OHR-M) using K-NN algorithm. It would help in recognizing Malayalam text entered using pen-like devices. A novel feature extraction method, a combination of time domain features and dynamic representation of writing direction along with its curvature is used for recognizing Malayalam characters. This writer independent system gives an excellent accuracy of 98.125% with recognition time of 15-30 milliseconds
Resumo:
Handwritten character recognition is always a frontier area of research in the field of pattern recognition and image processing and there is a large demand for OCR on hand written documents. Even though, sufficient studies have performed in foreign scripts like Chinese, Japanese and Arabic characters, only a very few work can be traced for handwritten character recognition of Indian scripts especially for the South Indian scripts. This paper provides an overview of offline handwritten character recognition in South Indian Scripts, namely Malayalam, Tamil, Kannada and Telungu
Resumo:
Optical Character Recognition plays an important role in Digital Image Processing and Pattern Recognition. Even though ambient study had been performed on foreign languages like Chinese and Japanese, effort on Indian script is still immature. OCR in Malayalam language is more complex as it is enriched with largest number of characters among all Indian languages. The challenge of recognition of characters is even high in handwritten domain, due to the varying writing style of each individual. In this paper we propose a system for recognition of offline handwritten Malayalam vowels. The proposed method uses Chain code and Image Centroid for the purpose of extracting features and a two layer feed forward network with scaled conjugate gradient for classification