948 resultados para Starch.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Corn starch, partially hydrolyzed by fungal alpha-amylase was investigated by using thermal analysis, microscopy and X-ray diffraction. After enzymatic treatment lower degradation onset temperatures were observed. DSC analysis showed almost similar range of gelatinization temperature, however, the enthalpies of gelatinization increased for the partially hydrolyzed starch granules. According to the X-ray diffraction analysis, stronger cereal pattern peaks were recognized after enzymatic digestion. The results suggested that the hydrolysis was more pronounced in the amorphous part of the starch granules.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Sour cassava starch is traditionally produced in Latin America for preparation of cheesebreads such as 'pan de yuca' and 'pandebono' in Colombia, and 'pao de queijo' in Brazil. The processing involved is described and improvements suggested. Criteria for quality assessment of sour cassava starch are based on consumers' requirements. Recommendations are made for improving the processing and product quality. Alternatives are given for extending the potential value of this traditional foodstuff.
Resumo:
The granules of waxy corn starch were isolated and various samples were separated by size and classified according to their average diameter in: non-separated granules (N), granules with diameter < 15 μm (S) and granules with diameter ≥ 15 μm (L). The samples were hydrolyzed by bacterial α-amylase and fungal amyloglucosidase. The starch granules remaining after enzymatic hydrolysis were analysed by X-ray diffraction and optical and scanning electron microscopy. Sephadex G-50 gel permeation chromatography of the dissolved residues from the hydrolysis of the N and S samples was performed directly and after successive enzymatic digestion with pullulanase and β-amylase. The results showed that the percentage of hydrolysis increased with a decrease in diameter. No apparent differences in waxy corn starch when observed under light and scanning electronic microscope were observed, regardless of diameter and enzyme action, although both large and small granules showed extensive surface corrosion after enzymatic attack. X-ray analysis suggested a decrease in the quantity of crystalline areas in the smaller granules, which would explain the high percentage of hydrolysis evidenced by these granules. The elution patterns of the α-glucans of both starches (N and S) were similar and reveled the presence of two fractions which were not susceptible to a-amylase and amyloglucosidase attack suggesting that these fractions were involved in the waxy corn starch crystalline regions. Debranching with pullulanase followed by gel-permeation chromatography showed that the amylopectins from the starch granules studied contained three groups of unit chains instead of the two reported in the literature.
Resumo:
The main goal of this work is to demonstrate that the use of recycled material originated from SiC ceramics is viable. These ceramics were produced by commercial starch consolidation process. Before calcination stage, surplus of these materials always appears. This surplus is rich in SiC and starch. Samples were made by material previously milled in automatic mortar and sieved (100 Tyler). Later, 10% of distilled water was added to the material and the mixture was pressed at 40 MPa. In order to characterize the ceramic, three point flexural test were made, according to the ASTM C1161/94 norm. The results were analyzed by Weibull statistical method. Apparent density and porosity measures also were made, according to ASTM C20/87 norm. A verification of the surface was made in the fracture area by the depth from focus method and SEM image analysis. The results showed that the recycling process is fully viable, being a good economic option and reduce possible pollutant effect to the environment.
Resumo:
This research work develops new methods to produce biodegradable starch-based trays for the purpose of replacing expanded polystyrene in the food packaging market. The starch based biopolymers present several drawbacks like poor mechanical properties and very high density. In order to overcome these drawbacks two research lines have been set up: blending thermoplastic starch with biobased reinforcements from agricultural wastes like barley straw and grape wastes, and testing the foamability of these materials with a Microwave-foaming method.
Resumo:
In this work, cassava starch was modified by treatment with sodium hypochlorite (NaClO) at different concentrations (0.8, 2.0 and 5.0 % of active chlorine) and selected physicochemical properties of the oxidized starches were investigated. The native and modified samples were evaluated considering moisture, carboxyl content, apparent viscosity, susceptibility to syneresis, mid-infrared spectroscopy and crystallinity index. The treatment with NaClO resulted in alterations in carboxyl content of the oxidized starches that increased with increasing concentration of the oxidant. Oxidized starches also showed higher susceptibility to syneresis, as assessed by the release of liquid during freezing and thawing. Apparent viscosity analysis showed decrease in peak viscosity of the oxidized starches. X-ray diffractograms showed that the oxidation influenced the extent of cassava starch relative crystallinity found to lie between 34.4 % (native) and 39.9 % (2.0 % active chlorine). The infrared spectra are sensitive to structural changes on starch macromolecules and presented characteristic peaks as C-O-C of the six carbon glucose ring absorbs at 1,150-1,085 cm -1 and due to axial deformation these bands changed with the crystal structure of the starch samples. © 2012 Association of Food Scientists & Technologists (India).
Resumo:
Polymers blends represent an important approach to obtain materials with modulated properties to reach different and desired properties in designing drug delivery systems in order to fulfill therapeutic needs. The aim of this work was to evaluate the influence of drug loading and polymer ratio on the physicochemical properties of microparticles of cross-linked high amylose starch-pectin blends loaded with diclofenac for further application in controlled drug delivery systems. Thermal analysis and X-ray diffractograms evidenced the occurrence of drug-polymer interactions and the former pointed also to an increase in thermal stability due to drug loading. The rheological properties demonstrated that drug loading resulted in formation of weaker gels while the increase of pectin ratio contributes to origin stronger structures. © 2012 Elsevier Ltd.
Resumo:
Starch is arguably one of the most actively investigated biopolymer in the world. In this study, the native (untreated) cassava starch granules (Manihot esculenta, Crantz) were hydrolyzed by standard hydrochloric acid solution at different temperatures (30 °C and 50 °C) and the hydrolytic transformations were investigated by the following techniques: simultaneous thermogravimetry-differential thermal analysis (TG-DTA), differential scanning calorimetry (DSC), as well as non-contact atomic force microscopy (NC-AFM), X-ray diffraction (XRD) powder patterns, and rapid viscoamylographic analysis (RVA). After the treatment with hydrochloric acid at different temperatures, the thermal stability, a gradual loss of pasting properties (viscosity), alterations in the gelatinization enthalpy (ΔHgel), were observed. The use of NC-AFM and XRD allowed the observation of the surface morphology and topography of the starch granules and changes in crystallinity of the granules, respectively. © 2012 Elsevier B.V. All rights reserved.
Resumo:
The aim of this article is to propose advances for the preparation of hybrid nanocomposites prepared by the combination of intercalation from solution and melt-processing methods. This research investigates the effect of the laponite RDS content on the thermal, structural, and mechanical properties of thermoplastic starch (TPS). X-ray diffraction was performed to investigate the dispersion of the laponite RDS layers into the TPS matrix. The results show good nanodispersion, intercalation, and exfoliation of the clay platelets, indicating that these composites are true nanocomposites. The presence of laponite RDS also improves the thermal stability and mechanical properties of the TPSmatrix due to its reinforcement effect which was optimized by the high degree of exfoliation of the clay. Thus, these results indicate that the exfoliated TPS-laponite nanocomposites have great potential for industrial applications and, more specifically, in the packaging field. © The Author(s) 2011 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.