958 resultados para Standard models
Resumo:
Standard algorithms in tracking and other state-space models assume identical and synchronous sampling rates for the state and measurement processes. However, real trajectories of objects are typically characterized by prolonged smooth sections, with sharp, but infrequent, changes. Thus, a more parsimonious representation of a target trajectory may be obtained by direct modeling of maneuver times in the state process, independently from the observation times. This is achieved by assuming the state arrival times to follow a random process, typically specified as Markovian, so that state points may be allocated along the trajectory according to the degree of variation observed. The resulting variable dimension state inference problem is solved by developing an efficient variable rate particle filtering algorithm to recursively update the posterior distribution of the state sequence as new data becomes available. The methodology is quite general and can be applied across many models where dynamic model uncertainty occurs on-line. Specific models are proposed for the dynamics of a moving object under internal forcing, expressed in terms of the intrinsic dynamics of the object. The performance of the algorithms with these dynamical models is demonstrated on several challenging maneuvering target tracking problems in clutter. © 2006 IEEE.
Resumo:
The Chinese language is based on characters which are syllabic in nature. Since languages have syllabotactic rules which govern the construction of syllables and their allowed sequences, Chinese character sequence models can be used as a first level approximation of allowed syllable sequences. N-gram character sequence models were trained on 4.3 billion characters. Characters are used as a first level recognition unit with multiple pronunciations per character. For comparison the CU-HTK Mandarin word based system was used to recognize words which were then converted to character sequences. The character only system error rates for one best recognition were slightly worse than word based character recognition. However combining the two systems using log-linear combination gives better results than either system separately. An equally weighted combination gave consistent CER gains of 0.1-0.2% absolute over the word based standard system. Copyright © 2009 ISCA.
Resumo:
Approximate Bayesian computation (ABC) is a popular technique for analysing data for complex models where the likelihood function is intractable. It involves using simulation from the model to approximate the likelihood, with this approximate likelihood then being used to construct an approximate posterior. In this paper, we consider methods that estimate the parameters by maximizing the approximate likelihood used in ABC. We give a theoretical analysis of the asymptotic properties of the resulting estimator. In particular, we derive results analogous to those of consistency and asymptotic normality for standard maximum likelihood estimation. We also discuss how sequential Monte Carlo methods provide a natural method for implementing our likelihood-based ABC procedures.
Resumo:
Sequential Monte Carlo (SMC) methods are popular computational tools for Bayesian inference in non-linear non-Gaussian state-space models. For this class of models, we propose SMC algorithms to compute the score vector and observed information matrix recursively in time. We propose two different SMC implementations, one with computational complexity $\mathcal{O}(N)$ and the other with complexity $\mathcal{O}(N^{2})$ where $N$ is the number of importance sampling draws. Although cheaper, the performance of the $\mathcal{O}(N)$ method degrades quickly in time as it inherently relies on the SMC approximation of a sequence of probability distributions whose dimension is increasing linearly with time. In particular, even under strong \textit{mixing} assumptions, the variance of the estimates computed with the $\mathcal{O}(N)$ method increases at least quadratically in time. The $\mathcal{O}(N^{2})$ is a non-standard SMC implementation that does not suffer from this rapid degrade. We then show how both methods can be used to perform batch and recursive parameter estimation.
Resumo:
The purpose of this article is to characterize dynamic optimal harvesting trajectories that maximize discounted utility assuming an age-structured population model, in the same line as Tahvonen (2009). The main novelty of our study is that uses as an age-structured population model the standard stochastic cohort framework applied in Virtual Population Analysis for fish stock assessment. This allows us to compare optimal harvesting in a discounted economic context with standard reference points used by fisheries agencies for long term management plans (e.g. Fmsy). Our main findings are the following. First, optimal steady state is characterized and sufficient conditions that guarantees its existence and uniqueness for the general case of n cohorts are shown. It is also proved that the optimal steady state coincides with the traditional target Fmsy when the utility function to be maximized is the yield and the discount rate is zero. Second, an algorithm to calculate the optimal path that easily drives the resource to the steady state is developed. And third, the algorithm is applied to the Northern Stock of hake. Results show that management plans based exclusively on traditional reference targets as Fmsy may drive fishery economic results far from the optimal.
Resumo:
There are two competing models of our universe right now. One is Big Bang with inflation cosmology. The other is the cyclic model with ekpyrotic phase in each cycle. This paper is divided into two main parts according to these two models. In the first part, we quantify the potentially observable effects of a small violation of translational invariance during inflation, as characterized by the presence of a preferred point, line, or plane. We explore the imprint such a violation would leave on the cosmic microwave background anisotropy, and provide explicit formulas for the expected amplitudes $\langle a_{lm}a_{l'm'}^*\rangle$ of the spherical-harmonic coefficients. We then provide a model and study the two-point correlation of a massless scalar (the inflaton) when the stress tensor contains the energy density from an infinitely long straight cosmic string in addition to a cosmological constant. Finally, we discuss if inflation can reconcile with the Liouville's theorem as far as the fine-tuning problem is concerned. In the second part, we find several problems in the cyclic/ekpyrotic cosmology. First of all, quantum to classical transition would not happen during an ekpyrotic phase even for superhorizon modes, and therefore the fluctuations cannot be interpreted as classical. This implies the prediction of scale-free power spectrum in ekpyrotic/cyclic universe model requires more inspection. Secondly, we find that the usual mechanism to solve fine-tuning problems is not compatible with eternal universe which contains infinitely many cycles in both direction of time. Therefore, all fine-tuning problems including the flatness problem still asks for an explanation in any generic cyclic models.
Resumo:
The brain is perhaps the most complex system to have ever been subjected to rigorous scientific investigation. The scale is staggering: over 10^11 neurons, each making an average of 10^3 synapses, with computation occurring on scales ranging from a single dendritic spine, to an entire cortical area. Slowly, we are beginning to acquire experimental tools that can gather the massive amounts of data needed to characterize this system. However, to understand and interpret these data will also require substantial strides in inferential and statistical techniques. This dissertation attempts to meet this need, extending and applying the modern tools of latent variable modeling to problems in neural data analysis.
It is divided into two parts. The first begins with an exposition of the general techniques of latent variable modeling. A new, extremely general, optimization algorithm is proposed - called Relaxation Expectation Maximization (REM) - that may be used to learn the optimal parameter values of arbitrary latent variable models. This algorithm appears to alleviate the common problem of convergence to local, sub-optimal, likelihood maxima. REM leads to a natural framework for model size selection; in combination with standard model selection techniques the quality of fits may be further improved, while the appropriate model size is automatically and efficiently determined. Next, a new latent variable model, the mixture of sparse hidden Markov models, is introduced, and approximate inference and learning algorithms are derived for it. This model is applied in the second part of the thesis.
The second part brings the technology of part I to bear on two important problems in experimental neuroscience. The first is known as spike sorting; this is the problem of separating the spikes from different neurons embedded within an extracellular recording. The dissertation offers the first thorough statistical analysis of this problem, which then yields the first powerful probabilistic solution. The second problem addressed is that of characterizing the distribution of spike trains recorded from the same neuron under identical experimental conditions. A latent variable model is proposed. Inference and learning in this model leads to new principled algorithms for smoothing and clustering of spike data.
Resumo:
The main theme running through these three chapters is that economic agents are often forced to respond to events that are not a direct result of their actions or other agents actions. The optimal response to these shocks will necessarily depend on agents' understanding of how these shocks arise. The economic environment in the first two chapters is analogous to the classic chain store game. In this setting, the addition of unintended trembles by the agents creates an environment better suited to reputation building. The third chapter considers the competitive equilibrium price dynamics in an overlapping generations environment when there are supply and demand shocks.
The first chapter is a game theoretic investigation of a reputation building game. A sequential equilibrium model, called the "error prone agents" model, is developed. In this model, agents believe that all actions are potentially subjected to an error process. Inclusion of this belief into the equilibrium calculation provides for a richer class of reputation building possibilities than when perfect implementation is assumed.
In the second chapter, maximum likelihood estimation is employed to test the consistency of this new model and other models with data from experiments run by other researchers that served as the basis for prominent papers in this field. The alternate models considered are essentially modifications to the standard sequential equilibrium. While some models perform quite well in that the nature of the modification seems to explain deviations from the sequential equilibrium quite well, the degree to which these modifications must be applied shows no consistency across different experimental designs.
The third chapter is a study of price dynamics in an overlapping generations model. It establishes the existence of a unique perfect-foresight competitive equilibrium price path in a pure exchange economy with a finite time horizon when there are arbitrarily many shocks to supply or demand. One main reason for the interest in this equilibrium is that overlapping generations environments are very fruitful for the study of price dynamics, especially in experimental settings. The perfect foresight assumption is an important place to start when examining these environments because it will produce the ex post socially efficient allocation of goods. This characteristic makes this a natural baseline to which other models of price dynamics could be compared.
Resumo:
This thesis describes simple extensions of the standard model with new sources of baryon number violation but no proton decay. The motivation for constructing such theories comes from the shortcomings of the standard model to explain the generation of baryon asymmetry in the universe, and from the absence of experimental evidence for proton decay. However, lack of any direct evidence for baryon number violation in general puts strong bounds on the naturalness of some of those models and favors theories with suppressed baryon number violation below the TeV scale. The initial part of the thesis concentrates on investigating models containing new scalars responsible for baryon number breaking. A model with new color sextet scalars is analyzed in more detail. Apart from generating cosmological baryon number, it gives nontrivial predictions for the neutron-antineutron oscillations, the electric dipole moment of the neutron, and neutral meson mixing. The second model discussed in the thesis contains a new scalar leptoquark. Although this model predicts mainly lepton flavor violation and a nonzero electric dipole moment of the electron, it includes, in its original form, baryon number violating nonrenormalizable dimension-five operators triggering proton decay. Imposing an appropriate discrete symmetry forbids such operators. Finally, a supersymmetric model with gauged baryon and lepton numbers is proposed. It provides a natural explanation for proton stability and predicts lepton number violating processes below the supersymmetry breaking scale, which can be tested at the Large Hadron Collider. The dark matter candidate in this model carries baryon number and can be searched for in direct detection experiments as well. The thesis is completed by constructing and briefly discussing a minimal extension of the standard model with gauged baryon, lepton, and flavor symmetries.
Resumo:
The works presented in this thesis explore a variety of extensions of the standard model of particle physics which are motivated by baryon number (B) and lepton number (L), or some combination thereof. In the standard model, both baryon number and lepton number are accidental global symmetries violated only by non-perturbative weak effects, though the combination B-L is exactly conserved. Although there is currently no evidence for considering these symmetries as fundamental, there are strong phenomenological bounds restricting the existence of new physics violating B or L. In particular, there are strict limits on the lifetime of the proton whose decay would violate baryon number by one unit and lepton number by an odd number of units.
The first paper included in this thesis explores some of the simplest possible extensions of the standard model in which baryon number is violated, but the proton does not decay as a result. The second paper extends this analysis to explore models in which baryon number is conserved, but lepton flavor violation is present. Special attention is given to the processes of μ to e conversion and μ → eγ which are bound by existing experimental limits and relevant to future experiments.
The final two papers explore extensions of the minimal supersymmetric standard model (MSSM) in which both baryon number and lepton number, or the combination B-L, are elevated to the status of being spontaneously broken local symmetries. These models have a rich phenomenology including new collider signatures, stable dark matter candidates, and alternatives to the discrete R-parity symmetry usually built into the MSSM in order to protect against baryon and lepton number violating processes.
Resumo:
Since the discovery of the Higgs boson at the LHC, its use as a probe to search for beyond the standard model physics, such as supersymmetry, has become important, as seen in a recent search by the CMS experiment using razor variables in the diphoton final state. Motivated by this search, this thesis examines the LHC discovery potential of a SUSY scenario involving bottom squark pair production with a Higgs boson in the final state. We design and implement a software-based trigger using the razor variables for the CMS experiment to record events with a bottom quark-antiquark pair from a Higgs boson. We characterize the full range of signatures at the LHC from this Higgs-aware SUSY scenario and demonstrate the sensitivity of the CMS data to this model.
Resumo:
Systems of interacting quantum spins show a rich spectrum of quantum phases and display interesting many-body dynamics. Computing characteristics of even small systems on conventional computers poses significant challenges. A quantum simulator has the potential to outperform standard computers in calculating the evolution of complex quantum systems. Here, we perform a digital quantum simulation of the paradigmatic Heisenberg and Ising interacting spin models using a two transmon-qubit circuit quantum electrodynamics setup. We make use of the exchange interaction naturally present in the simulator to construct a digital decomposition of the model-specific evolution and extract its full dynamics. This approach is universal and efficient, employing only resources that are polynomial in the number of spins, and indicates a path towards the controlled simulation of general spin dynamics in superconducting qubit platforms.
Resumo:
Growth of a temperate reefa-ssociated fish, the purple wrasse (Notolabrus fucicola), was examined from two sites on the east coast of Tasmania by using age- and length-based models. Models based on the von Bertalanffy growth function, in the standard and a reparameterized form, were constructed by using otolith-derived age estimates. Growth trajectories from tag-recaptures were used to construct length-based growth models derived from the GROTAG model, in turn a reparameterization of the Fabens model. Likelihood ratio tests (LRTs) determined the optimal parameterization of the GROTAG model, including estimators of individual growth variability, seasonal growth, measurement error, and outliers for each data set. Growth models and parameter estimates were compared by bootstrap confidence intervals, LRTs, and randomization tests and plots of bootstrap parameter estimates. The relative merit of these methods for comparing models and parameters was evaluated; LRTs combined with bootstrapping and randomization tests provided the most insight into the relationships between parameter estimates. Significant differences in growth of purple wrasse were found between sites in both length- and age-based models. A significant difference in the peak growth season was found between sites, and a large difference in growth rate between sexes was found at one site with the use of length-based models.
Resumo:
EXTRACT (SEE PDF FOR FULL ABSTRACT): Streamflow values show definite seasonal patterns in their month-to-month correlation structure. The structure also seems to vary as a function of the type of stream (coastal versus mountain or humid versus arid region). The standard autoregressive moving average (ARMA) time series model is incapable of reproducing this correlation structure. ... A periodic ARMA time series model is one in which an ARMA model is fitted to each month or season but the parameters of the model are constrained to be periodic according to a Fourier series. This constraint greatly reduces the number of parameters but still leaves the flexibility for matching the seasonally varying correlograms.
Resumo:
In this paper we explore the possibility of using the equations of a well known compact model for CMOS transistors as a parameterized compact model for a variety of FET based nano-technology devices. This can turn out to be a practical preliminary solution for system level architectural researchers, who could simulate behaviourally large scale systems, while more physically based models become available for each new device. We have used a four parameter version of the EKV model equations and verified that fitting errors are similar to those when using them for standard CMOS FET transistors. The model has been used for fitting measured data from three types of FET nano-technology devices obeying different physics, for different fabrication steps, and under different programming conditions. © 2009 IEEE NANO Organizers.