997 resultados para Sr Isotopic Ratio


Relevância:

90.00% 90.00%

Publicador:

Resumo:

About 13 m of Cretaceous, tholeiitic basalt, ranging from normal (N-MORB) to transitional (T-MORB) mid-ocean-ridge basalts, was recovered at Ocean Drilling Program Site 843 west of the island of Hawaii. These moderately fractionated, aphyric lavas are probably representative of the oceanic basement on which the Hawaiian Islands were built. Whole-rock samples from parts of the cores exhibiting only slight, low-temperature, seawater alteration were analyzed for major element, trace element, and isotopic composition. The basalts are characterized by enrichment in the high field strength elements relative to N-MORB, by a distinct positive Eu anomaly, and by Ba/Nb and La/Nb ratios that are much lower than those of other crustal or mantle-derived rocks, but their isotope ratios are similar to those of present-day N-MORB from the East Pacific Rise. Hole 843A lavas are isotopically indistinguishable from Hole 843B lavas and are probably derived from the same source at a lower degree of partial melting, as indicated by lower Y/Nb and Zr/Nb ratios and by higher concentrations of light and middle rare earth elements and other incompatible elements relative to Hole 843B lavas. Petrographic and trace-element evidence indicates that the Eu anomaly was the result of neither plagioclase assimilation nor seawater alteration. The Eu anomaly and the enrichments in Ta, Nb, and possibly U and K relative to N-MORB apparently are characteristic of the mantle source. Age-corrected Nd and Sr isotopic ratios indicate that the source for the lavas recovered at ODP Site 843 was similar to the source for Southeast Pacific MORB. An enriched component within the Cretaceous mantle source of these basalts is suggested by their initial 208Pb/204Pb-206Pb/204Pb and epsilon-Nd-206Pb/204Pb ratios. The Sr-Pb isotopic trend of Hawaiian post-shield and post-erosional lavas cannot be explained by assimilation of oceanic crust with the isotopic composition of the Site 843 basalts.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

New geochemical data from the Cocos Plate constrain the composition of the input into the Central American subduction zone and demonstrate the extent of influence of the Galápagos Hotspot on the Cocos Plate. Samples include sediments and basalts from Ocean Drilling Program (ODP) Site 1256 outboard of Nicaragua, gabbroic sills from ODP Sites 1039 and 1040, tholeiitic glasses from the Fisher Ridge off northwest Costa Rica, and basalts from the Galápagos Hotspot Track outboard of Central Costa Rica. Site 1256 basalts range from normal to enriched MORB in incompatible elements and have Pb and Nd isotopic compositions within the East Pacific Rise MORB field. The sediments have similar 206Pb/204Pb and only slightly more radiogenic 207Pb/204Pb and 208Pb/204Pb isotope ratios than the basalts. Altered samples from the subducting Galápagos Hotspot Track have similar Nd and Pb isotopic compositions to fresh Galápagos samples but have significantly higher Sr isotopic composition, indicating that the subduction input will have a distinct geochemical signature from Galápagos-type mantle material that may be present in the wedge beneath Costa Rica. Gabbroic sills from Sites 1039 and 1040 in East Pacific Rise (EPR) crust show evidence for influence of the Galápagos Hotspot ?100 km beyond the morphological hotspot track.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The isotopic ratio of strontium-87 to strontium-86 shows no detectable variation in present-day ocean water but changes slowly over millions of years. The strontium contained in carbonate shells of marine organisms records the ratio of strontium-87 to strontium-86 of the oceans at the time that the shells form. Sedimentary rocks composed of accumulated fossil carbonate shells can be dated and correlated with the use of high precision measurements of the ratio of strontium-87 to strontium-86 with a resolution that is similar to that of other techniques used in age correlation. This method may prove valuable for many geological, paleontological, paleooceanographic, and geochemical problems.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Late Eocene microtektites and crystal-bearing microkrystites extracted from DSDP and ODP cores from the Atlantic, Pacific, and Indian oceans have been analyzed to address their provenance. A new analysis of Nd and Sr isotopic compositions confirms previous work and the assignment of the uppermost microtektite layer to the North American tektites, which are associated with the 35.5 Ma, 85 km diameter Chesapeake impact structure of Virginia, USA. Extensive major element and Nd and Sr isotopic analyses of the microkrystites from the lowermost layer were obtained. The melanocratic microkrystites from Sites 216 and 462 in the Indian and Pacific oceans possess major element chemistries, Sr and Nd isotopic signatures and Sm-Nd, T CHUR, model ages similar to those of tagamite melt rocks in the Popigai impact structure. They also possess Rb-Sr, T UR, model ages that are younger than the tagamite TCHUR ages by up to ~1 Ga, which require a process, as yet undefined, of Rb/Sr enrichment. These melanocratic microkrystites are consistent with a provenance from the 35.7 Ma, 100 km diameter Popigai impact structure of Siberia, Russia, while ruling out other contemporaneous structures as a source. Melanocratic microkrystites from other sites and leucocratic microkrystites from all sites possess a wide range of isotopic compositions (epsilon (143Nd) values of -16 to -27.7 and epsilon (87Sr) values of 4.1-354.0), making the association with Popigai tagamites less clear. These microkrystites may have been derived by the melting of target rocks of mixed composition, which were ejected without homogenization. Dark glass and felsic inclusions extracted from Popigai tagamites possess epsilon (143Nd) and epsilon (87Sr) values of -26.7 to -27.8 and 374.7 and 432.4, respectively, and T CHUR and T UR model ages of 1640-1870 Ma and 240-1830 Ma, respectively, which require the preservation of initially present heterogeneity in the source materials. The leucocratic microkrystites possess diverse isotopic compositions that may reflect the melting of supra-basement sedimentary rocks from Popigai, or early basement melts that were ejected prior to homogenization of the Popigai tagamites. The ejection of melt rocks with chemistries consistent with a basement provenance, rather than the surface ~1 km of sedimentary cover rocks, atypically indicates a non-surficial source to some of the ejecta. Microkrystites from two adjacent biozones possess statistically indistinguishable major element compositions, suggesting they have a single source. The occurrence of microkrystites derived from a single impact event, but in different biozones, can be explained by: (1) diachronous biozone boundaries; (2) post-accumulation sedimentary reworking; or (3) erroneous biozonation.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Twenty-four piston core sediment samples and 13 sediments and 3 basalts from DSDP Leg 78 Site 543 were analyzed for Sr, Nd and Pb isotopic compositions. The results show sediment with highly radiogenic Pb (206Pb/204Pb up to 19.8) and rather radiogenic Sr and unradiogenic Nd has been deposited in the region since the Cretaceous. The source of this sediment is probably the Archean Guiana Highland, which is drained by the Orinoco River. Pb and Sr isotopic compositions and sediment thickness decrease and 143Nd/144Nd increases northward due to a decrease in turbiditic component. This decrease is partly due to the damming action of basement ridges. Rare earth concentrations in the sediments are somewhat low, due to the abundance of detrital and biogenic components in the sediment and rapid sedimentation rates. Both positive and negative Ce anomalies occur in the surface sediments, but only positive Ce anomalies occur in the Site 543 sediments. It is unlikely that sediment subducted to the source region of Lesser Antilles arc magmas could be the cause of negative Ce anomalies in those magmas. Isotopic compositions of Site 543 basalts show some effect of contamination by seawater-basalt reaction products and sediments. Beyond this, however, they are typical of "normal" depleted MORB.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Measurements of 87Sr/86Sr on samples of planktonic foraminifers were used to reconstruct changes in the Sr isotopic composition of seawater for the past 8 Ma. The late Neogene was marked by a general, but not regular, increase in 87S/86Sr with two breaks in slope at 5.5 and 2.5 Ma. These times mark the beginning of two periods of steep increase in 87Sr/86Sr values, relative to preceding periods characterized by essentially constant values. During the last 2.5 Ma, 87Sr/86Sr values increased at an average rate of 0.000054/Ma. This steep increase suggests that the modem ocean is not in Sr isotopic equilibrium relative to its major input fluxes. A non-equilibrium model for the modern Sr budget suggests that the residence time of Sr is ~2.5 Ma, which is significantly less than previously accepted estimates of 4-5 Ma. Modelling results suggest that the increase in 87Sr/86Sr over the past 8 Ma could have resulted from a 25% increase in the riverine flux of Sr or an increase in the average 87Sr/86Sr of this flux by 0.0006. The dominant cause of increasing 87Sr/86Sr values of seawater during the late Neogene is believed to be increased rates of uplift and chemical weathering of mountainous regions. Calculations suggest that uplift and weathering of the Himalayan-Tibetan region alone can account for the majority of the observed 87Sr/86Sr increase since the early Late Miocene. Exhumation of Precambrian shield areas by continental ice-sheets may have contributed secondarily to accelerated mechanical and chemical weathering of old crustal silicates with high 87Sr/86Sr values. In fact, the upturn in 87Sr/86Sr at 2.5 Ma coincides with increased glacial activity in the Northern Hemisphere. A variety of geochemical (87Sr/86Sr, Ge/Si, d13C, CCD, etc.) and sedimentologic data (accumulation rates) from the marine sedimentary record are compatible with a progressive increase in the chemical weathering rate of continents and dissolved riverine fluxes during the late Cenozoic. We hypothesize that chemical weathering of the continents and dissolved riverine fluxes to the oceans reached a maximum during the late Pleistocene because of repeated glaciations, increased continental exposure by lowered sea level, and increased continental relief resulting from high rates of tectonism.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Strontium isotopes are useful tracers of fluid-rock interaction in marine hydrothermal systems and provide a potential way to quantify the amount of seawater that passes through these systems. We have determined the whole-rock Sr-isotopic compositions of a section of upper oceanic crust that formed at the fast-spreading East Pacific Rise, now exposed at Hess Deep. This dataset provides the first detailed comparison for the much-studied Ocean Drilling Program (ODP) drill core from Site 504B. Whole-rock and mineral Sr concentrations indicate that Sr-exchange between hydrothermal fluids and the oceanic crust is complex, being dependent on the mineralogical reactions occurring; in particular, epidote formation takes up Sr from the fluid increasing the 87Sr/86Sr of the bulk-rock. Calculating the fluid-flux required to shift the Sr-isotopic composition of the Hess Deep sheeted-dike complex, using the approach of Bickle and Teagle (1992, doi:10.1016/0012-821X(92)90221-G) gives a fluid-flux similar to that determined for ODP Hole 504B. This suggests that the level of isotopic exchange observed in these two regions is probably typical for modern oceanic crust. Unfortunately, uncertainties in the modeling approach do not allow us to determine a fluid-flux that is directly comparable to fluxes calculated by other methods.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The mineralogy and stable (O and C) and Sr isotopic compositions of low-temperature alteration phases were determined in Hole 735B gabbroic rocks in order to understand the processes of low-temperature alteration in this uplifted block of lower oceanic crust. Phyllosilicates include smectite (saponite, Mg montmorillonite, and nontronite), chlorite/smectite, chlorite, talc, and serpentine. Other phases include prehnite, albite, K-feldspar, analcite, natrolite, thompsonite, pyrite, and titanite. The low-grade mineral assemblages mainly represent zeolite facies and lower-temperature "seafloor weathering" processes. Phyllosilicates formed over a range of temperatures but may also reflect variable reaction progress. Alteration temperatures were probably somewhat greater below 1300 meters below seafloor. Mineralogy and isotopic data indicate that conditions were mostly reducing and that seawater solutions were rock dominated. Carbonates formed late from cold and generally oxidizing seawater solution, however, as seawater penetrated downward as the result of fracturing and faulting in the uppermost portion of the uplifted crustal block.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The bimodal, alkaline volcanic suite of the Kap Washington Group (KWG) at the northern coast of Greenland was investigated during the BGR CASE 2 expedition in 1994. Geochemical and Nd and Sr isotopic data are presented for basalts to rhyolites of the KWG and of related basaltic dykes cutting Lower Paleozoic sediments. In the evd(t) vs. (87Sr/86Sr)t diagram, the KWG basalts and rhyolites follow a common mixing trend with increasing crustal contamination from basic to acid volcanites. Assimilation of pre-existing crustal rocks during formation of the rhyolitic melt is documented by Nd model ages of 0.9-1.2 Ga and by different fractionation trends for the basalts and the rhyolites in the Y vs. Zr diagram. Petrographical and geochemical features indicate intra-plate volcanism which was active most probably during a continental rifting phase. A new Rb/Sr whole rock age on rhyolites of 64 ±3 Ma, corresponding to the result of LARSEN (1982), confirms that the volcanic activity lasted until the Cretaceous-Tertiary boundary. 40Ar139Ar dating on amphibol separates from a comendite yielded strongly disturbed age spectra with a minimum age of 37.7 ±0.3 Ma. This age is interpreted to date a hydrothermal overprint of the volcanic rocks related to compressive tectonics which led to the overthrust of basement rocks over the Kap Washington Group.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Carbonate mineral precipitation in the upper oceanic crust during low-temperature, off-axis, hydrothermal circulation is investigated using new estimates of the bulk CO2 content of seven DSDP/ODP drill cores. In combination with previously published data these new data show: (i) the CO2 content of the upper ~ 300 m of the crust is substantially higher in Cretaceous than in Cenozoic crust and (ii) for any age of crust, there is substantially more CO2 in Atlantic (slow-spreading) than Pacific (intermediate- to fast-spreading) crust. Modelling the Sr-isotopic composition of the carbonates suggests that > 80% of carbonate mineral formation occurs within < 20 Myr of crust formation. This means that the higher CO2 content of Cretaceous crust reflects a secular change in the rate of CO2 uptake by the crust. Oxygen isotope derived estimates of carbonate mineral precipitation temperatures show that the average and minimum temperature of carbonate precipitation was ~10 °C higher temperatures in the Cretaceous than in the Cenozoic. This difference is consistent with previous estimates of secular change in bottom seawater temperature. Higher fluid temperature within the crust will have increased reaction rates potentially liberating more basaltic Ca and hence enhancing carbonate mineral precipitation. Additionally, if crustal fluid pH is controlled by fluid-rock reaction, the higher Ca content of the Cretaceous ocean will also have enhanced carbonate mineral precipitation. New estimates of the rate of CO2 uptake by the upper ocean crust during the Cenozoic are much lower than previous estimates.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Subduction of the Pacific plate beneath the Mariana forearc releases fluids to the overlying mantle wedge that ascend, producing serpentinite "mud" that discharges on the ocean floor. As part of Leg 195 of the Ocean Drilling Program cores were obtained from drill-holes into the mud volcanoes. We report the isotopic composition of Sr in water squeezed from intervals of the cores, in the serpentinite mud, in leaches of the serpentinite mud, and in entrained small harzburgitic clasts. Except in the upper few meters below the seawater-mud interface, where pore water approaches seawater Sr concentration and isotopic ratio, Sr concentration and isotopic composition remain constant at 3-6 µmol/kg and ~0.7054. Because the elemental chemistry of the pore water is unlike seawater, this isotopic composition reflects fluids derived from the subducted slab, probably modified by reaction with mantle material during ascent. Higher Sr isotopic ratios, up to 0.7087, - but not with higher Sr concentrations in pore water - occur superimposed on an advection profile at 13-16 mbsf surrounding a thin layer of foraminiferal sand. Since the upward seepage velocity of slab fluids in the mud volcano vents is a few cm/yr, exchange of Sr between these carbonates and the rising fluids must have occurred within a maximum of a few hundred years, essentially instantaneously given the millions, or tens of millions, of years the mud volcanoes have been in existence. In contrast, the strontium isotopic compositions of leached serpentinite mud, and of small harzburgite clasts entrained in the mud, are always significantly greater than that of the pore water. In small harzburgite clasts the ratio reaches 0.7088, almost as high as the seawater value of 0.7092 and much higher than the value of typical mantle-derived strontium of ~0.704. The serpentinite muds and harzburgite clasts clearly equilibrated with seawater Sr when they were initially deposited at the surface of the seamount, but following burial they have not fully equilibrated with strontium in the pore water now discharging through the vents. These variations in the strontium isotopic composition of solids and pore waters are more consistent with episodic expulsion of fluids in the subduction zone than steady state flow. Whereas strontium in carbonates equilibrates isotopically within a few hundred years, strontium in buried harzburgite clasts does not equilibrate in the same time, assuming steady state rates of upward fluid flow. By inference, the harzburgite clasts and associated serpentinite mud must have been near the seafloor, unburied, for a yet undetermined but much longer period of time to have equilibrated from ~0.704 to 0.709 prior to subsequent burial. It may be possible to characterize at least the periodicity of fluid release in the mud volcano setting by investigating the zonation of strontium isotopic composition of hartzburgite clasts throughout the 60-meter deep composite cores.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The mineralogy, major and trace elements, and neodymium and strontium isotopes of surface sediments in the South China Sea (SCS) are documented with the aim of investigating their applicability in provenance tracing. The results indicate that mineralogical compositions alone do not clearly identify the sources for the bulk sediments in the SCS. The Nd isotopic compositions of the SCS sediments show a clear zonal distribution. The most negative epsilon-Neodymium values were obtained for sediments from offshore South China (-13.0 to -10.7), while those from offshore Indochina are slightly more positive (-10.7 to -9.4). The Nd isotopic compositions of the sediments from offshore Borneo are even higher, with epsilon-Neodymium ranging from -8.8 to -7.0, and the sediments offshore from the southern Philippine Arc have the most positive epsilon-Neodymium values, from -3.7 to +5.3. This zonal distribution in epsilon-Neodymium is in good agreement with the Nd isotopic compositions of the sediments supplied by river systems that drain into the corresponding regions, indicating that Nd isotopic compositions are an adequate proxy for provenance tracing of SCS sediments. Sr isotopic compositions, in contrast, can only be used to identify the sediments from offshore South China and offshore from the southern Philippine Arc, as the 87Sr/86Sr ratios of sediments from other regions overlapped. Similar zonal distributions are also apparent in a La-Th-Sc discrimination diagram. Sediments fromthewestmargin of the SCS, such as those fromBeibuwan Bay, offshore fromHainan Island, offshore from Indochina, and from the Sunda Shelf plot in the same field, while those offshore from the northeastern SCS, offshore from Borneo, and offshore from the southern Philippine Arc plot in distinct fields. Thus, the La-Th-Sc discrimination diagram, coupledwith Nd isotopes, can be used to trace the provenance of SCS sediments. Using this method, we re-assessed the provenance changes of sediments at Ocean Drilling Program (ODP) Site 1148 since the late Oligocene. The results indicate that sediments deposited after 23.8 Ma (above 455 mcd: meters composite depth) were supplied mainly from the eastern South China Block, with a negligible contribution from the interior of the South China Block. Sediments deposited before 26 Ma (beneath 477 mcd) were supplied mainly from the North Palawan Continental Terrane, which may retain the geochemical characteristics of the materials covered on the late Mesozoic granitoids along the coastal South China. For that the North Palawan Continental Terrane is presently located within the southern Philippine Arc but was located close to ODP Site 1148 in the late Oligocene. The weathering products of volcanic material associated with the extension of the SCS ocean crust also contributed to these sediments. The rapid change in sediment source at 26-23.8 Ma probably resulted from a sudden cessation of sediment supply from the North Palawan Continental Terrane. Wesuggest that the North Palawan Continental Terrane drifted southwards alongwith the extension of the SCS ocean crust during that time, and when the basin was large enough, the supply of sediment from the south to ODP Site 1148 at the north slope may have ceased.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Strontium isotopic compositions of ichthyoliths (microscopic fish remains) in deep-sea clays recovered from the North Pacific Ocean (ODP holes 885A, 886B, and 886C) are used to provide stratigraphic age control within these otherwise undatable sediments. Age control within the deep-sea clays is crucial for determining changes in sedimentation rates, and for calculating fluxes of chemical and mineral components to the sediments. The Sr isotopic ages are in excellent agreement with independent age datums from above (diatom ooze), below (basalt basement) and within (Cretaceous-Tertiary boundary) the clay deposit. The 87Sr/86Sr ratios of fish teeth from the top of the pelagic clay unit (0.7089891), indicate an Late Miocene age (5.8 Ma), as do radiolarian and diatom biostratigraphic ages in the overlying diatom ooze. The 87Sr/86Sr ratio (0.707887) is consistent with a Cretaceous-Tertiary boundary age, as identified by anomalously high iridium, shocked quartz, and sperules in Hole 886C. The 87Sr/86Sr ratios of pretreated fish teeth from the base of the clay unit are similar to Late Cretaceous seawater (0.707779-0.7075191), consistent with radiometric ages from the underlying basalt of 81 Ma. Calculation of sedimentation rates based on Sr isotopic ages from Hole 886C indicate an average sedimentation rate of 17.7 m/Myr in Unit II (diatom ooze), 0.55 m/Myr in Unit IIIa (pelagic clay), and 0.68 m/Myr in Unit IIIb (distal hydrothermal precipitates). The Sr isotopic ages indicate a period of greatly reduced sedimentation (or possible hiatus) between about 35 and 65 Ma (Eocene-Paleocene), with a linear sedimentation rate of only 0.04 m/Myr The calculated sedimentation rates are generally inversely proportional to cobalt accumulation rates and ichthyolith abundances. However, discrepancies between Sr isotope ages and cobalt accumulation ages of l0-15 Myr are evident, particularly in the middle of the clay unit IIIa (Oligocene-Paleocene).

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We analyzed 87Sr/86Sr ratios in foraminifera, pore fluids, and fish teeth for samples ranging in age from Eocene to Pleistocene from four Ocean Drilling Program sites distributed around the globe: Site 1090 in the Cape Basin of the Southern Ocean, Site 757 on the Ninetyeast Ridge in the Indian Ocean, Site 807 on the Ontong-Java Plateau in the western equatorial Pacific, and Site 689 on the Maud Rise in the Southern Ocean. Sr isotopic ratios for dated foraminifera consistently plot on the global seawater Sr isotope curve. For Sites 1090, 757, and 807 Sr isotopic values of the pore fluids are generally less radiogenic than contemporaneous seawater values, as are values for fossil fish teeth. In contrast, pore fluid 87Sr/86Sr values at Site 689 are more radiogenic than contemporaneous seawater, and the corresponding fish teeth also record more radiogenic values. Thus, Sr isotopic values preserved in fossil fish teeth are consistently altered in the direction of the pore fluid values; furthermore, there is a correlation between the magnitude of the offset between the pore fluids and the seawater curve, and the associated offset between the fish teeth and the seawater curve. These data suggest that the hydroxyfluorapatite of the fossil fish teeth continues to recrystallize and exchange Sr with its surroundings during burial and diagenesis. Therefore, Sr chemostratigraphy can be used to determine rough ages for fossil fish teeth in these cores, but cannot be used to fine-tune age models. In contrast to the Sr isotopic system, our Nd concentration data, combined with published isotopic and rare earth element data, suggest that fish teeth acquire Nd during early diagenesis while they are still in direct contact with seawater. The concentrations of Nd acquired at this stage are extremely high relative to the concentrations in surrounding pore fluids. As a result, Nd isotopes are not altered during burial and later diagenesis. Therefore, fossil fish teeth from a variety of marine environments preserve a reliable and robust record of deep seawater Nd isotopic compositions from the time of deposition.