989 resultados para Split tensile strength


Relevância:

90.00% 90.00%

Publicador:

Resumo:

In order to prolong the clinical longevity of resilient denture relining materials and reduce plaque accumulation, incorporation of antimicrobial agents into these materials has been proposed. However, this addition may affect their properties. Objective: This study evaluated the effect of the addition of antimicrobial agents into one soft liner (Soft Confort, Dencril) on its peel bond strength to one denture base (QC 20, Dentsply). Material and Methods: Acrylic specimens (n=9) were made (75x10x3 mm) and stored in distilled water at 37 degrees C for 48 h. The drug powder concentrations (nystatin 500,000U - G2; nystatin 1,000,000U - G3; miconazole 125 mg - G4; miconazole 250 mg - G5; ketoconazole 100 mg - G6; ketoconazole 200 mg - G7; chlorhexidine diacetate 5% - G8; and 10% chlorhexidine diacetate - G9) were blended with the soft liner powder before the addition of the soft liner liquid. A group (G1) without any drug incorporation was used as control. Specimens (n=9) (75x10x6 mm) were plasticized according to the manufacturers' instructions and stored in distilled water at 37 degrees C for 24 h. Relined specimens were then submitted to a 180-degree peel test at a crosshead speed of 10 mm/min. Data (MPa) were analyzed by analysis of variance (alpha=0.05) and the failure modes were visually classified. Results: No significant difference was found among experimental groups (p=0.148). Cohesive failure located within the resilient material was predominantly observed in all tested groups. Conclusions: Peel bond strength between the denture base and the modified soft liner was not affected by the addition of antimicrobial agents.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In this article research into the uniaxial tensile strength of Al2O3 monolithic ceramic is presented. The experimental procedure of the spalling of long bars is investigated from different approaches. This method is used to obtain the tensile strength at high strain rates under uniaxial conditions. Different methodologies proposed by several authors are used to obtain the tensile strength. The hypotheses needed for the experimental set-up are also checked, and the requirements of the set-up and the variables are also studied by means of numerical simulations. The research shows that the shape of the projectile is crucial to achieve successfully tests results. An experimental campaign has been carried out including high speed video and a digital image correlation system to obtain the tensile strength of alumina. Finally, a comparison of the test results provided by three different methods proposed by different authors is presented. The tensile strength obtained from the three such methods on the same specimens provides contrasting results. Mean values vary from one method to another but the trends are similar for two of the methods. The third method gives less scatter, though the mean values obtained are lower and do not follow the same trend as the other methods for the different specimens.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A series of quasi-static and dynamic tensile tests at varying temperatures were carried out to determine the mechanical behaviour of Ti-45Al-2Nb-2Mn+0.8vol.% TiB2 XD as-HIPed alloy. The temperature for the tests ranged from room temperature to 850  ∘C. The effect of the temperature on the ultimate tensile strength, as expected, was almost negligible within the selected temperature range. Nevertheless, the plastic flow suffered some softening because of the temperature. This alloy presents a relatively low ductility; thus, a low tensile strain to failure. The dynamic tests were performed in a Split Hopkinson Tension Bar, showing an increase of the ultimate tensile strength due to the strain rate hardening effect. Johnson-Cook constitutive relation was used to model the plastic flow. A post-testing microstructural of the specimens revealed an inhomogeneous structure, consisting of lamellar α2 + γ structure and γ phase equiaxed grains in the centre, and a fully lamellar structure on the rest. The assessment of the duplex-fully lamellar area ratio showed a clear relationship between the microstructure and the fracture behaviour.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

An extruded Mg–1Mn–1Nd (wt%) (MN11) alloy was tested in tension in an SEM at temperatures of 323K (50°C), 423 K (150°C), and 523 K (250°C) to analyse the local deformation mechanisms through in situ observations. Electron backscatter diffraction was performed before and after the deformation. It was found that the tensile strength decreased with increasing temperature, and the relative activity of different twinning and slip systems was quantified. At 323K (50C), extension twinning, basal, prismatic (a) and pyramidal (c+a) slip were active. Much less extension twinning was observed at 423K (150ºC) while basal slip and prismatic (a) slip were dominant and presented similar activities. At 523K (250ºC), twinning was not observed, and basal slip controlled the deformation.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A comparative study of the mechanical properties of 20 experimental alloys has been carried out. The effect of different contents of Si, Cu, Mg, Fe and Mn, as well as solidification rate, has been assessed using a strength-ductility chart and a quality index-strength chart developed for the alloys. The charts show that the strength generally increases and the ductility decreases with an increasing content of Cu and Mg. Increased Fe (at Fe/Mn ratio 0.5) dramatically lowers the ductility and strength of low Si alloys. Increased Si content generally increases the strength and the ductility. The increase in ductility with increased Si is particularly significant when the Fe content is high. The charts are used to show that the cracking of second phase particles imposes a limit to the maximum achievable strength by limiting the ductility of strong alloys. The (Cu + Mg) content (at.%), which determines the precipitation strengthening and the volume fraction of Cu-rich and Mg-rich intermetallics, can be used to select the alloys for given strength and ductility, provided the Fe content stays below the Si-dependent critical level for the formation of pre-eutectic alpha-phase particles or beta-phase plates.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Aim. Numerous studies report an association between muscle strength and bone mineral density (BMD) in young and older women. However, the participants are generally non-athletes, thus it is unclear if the relationship varies by exercise status. Therefore, the purpose was to examine the relationships between BMD and muscle strength in young women with markedly different exercise levels. Methods. Experimental design: cross-sectional. Setting: a University research laboratory. Participants: 18 collegiate gymnasts and 22 age- and weight-matched recreationally active control women. Measures: lumbar spine, femoral neck, arm, leg and whole body BMD (g/cm(2)) were assessed by dual X-ray absorptiometry. In addition, lumbar spine and femoral neck bone mineral apparent density (BMAD, g/cm(3)) was calculated. Handgrip strength and knee extensor and flexor torque (60degrees/s) were determined by dynamometry, and bench press and leg press strength (1-RM) using isotonic equipment. Results. BMD at all sites and bench press, leg press and knee flexor strength were greater in gymnasts than controls (p

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Objectives - Powdered and granulated particulate materials make up most of the ingredients of pharmaceuticals and are often at risk of undergoing unwanted agglomeration, or caking, during transport or storage. This is particularly acute when bulk powders are exposed to extreme swings in temperature and relative humidity, which is now common as drugs are produced and administered in increasingly hostile climates and are stored for longer periods of time prior to use. This study explores the possibility of using a uniaxial unconfined compression test to compare the strength of caked agglomerates exposed to different temperatures and relative humidities. This is part of a longer-term study to construct a protocol to predict the caking tendency of a new bulk material from individual particle properties. The main challenge is to develop techniques that provide repeatable results yet are presented simply enough to be useful to a wide range of industries. Methods - Powdered sucrose, a major pharmaceutical ingredient, was poured into a split die and exposed to high and low relative humidity cycles at room temperature. The typical ranges were 20–30% for the lower value and 70–80% for the higher value. The outer die casing was then removed and the resultant agglomerate was subjected to an unconfined compression test using a plunger fitted to a Zwick compression tester. The force against displacement was logged so that the dynamics of failure as well as the failure load of the sample could be recorded. The experimental matrix included varying the number of cycles, the amount between the maximum and minimum relative humidity, the height and diameters of the samples, the number of cycles and the particle size. Results - Trends showed that the tensile strength of the agglomerates increased with the number of cycles and also with the more extreme swings in relative humidity. This agrees with previous work on alternative methods of measuring the tensile strength of sugar agglomerates formed from humidity cycling (Leaper et al 2003). Conclusions - The results show that at the very least the uniaxial tester is a good comparative tester to examine the caking tendency of powdered materials, with a simple arrangement and operation that are compatible with the requirements of industry. However, further work is required to continue to optimize the height/ diameter ratio during tests.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Surface defects on steel parts borne costs of smelting industries due to the need of rework. Sand molds are frequently used in foundry industries and largely responsible for providing surface defects. This study aims to optimize the levels of the molding process variables to minimize the occurrence of surface defects in steel castings in silica sand molds chemically linked by cold cure process. The methodology used the experimental design with split plot, being considered in the study the resin percentage factors in the mold formulation, addition of iron oxide, type of paint, the paint application method, amount of ink layers, use of hot air along the lines and waiting time of the mold before casting. They were analyzed as response variables erosion defects, sand inclusion, penetration, porosity and surface finish. Tensile strength tests were performed to evaluate the influence of factors on mechanical parameters and the microstructural parameters were carried out the analysis of X-ray diffraction, scanning electron microscopy (SEM) and thermal analysis (TG / DSC / dilatometry). The results elucidate that for the faulty erosion, the only significant factor with a 95% confidence level was the type of ink and the ink alumina-based superior results obtained. For the sand inclusion of defect, there were three significant factors, with best results obtained with alumina-based paint and spray applied using hot air in the mold before casting the metal. For the defect penetration, there were four significant factors, the best results being achieved with 0.8% of resin and addition of iron oxide in the molding formulation, the paint being applied by brush and standby time of 24 hours before leak. For the defect porosity with a 95% confidence level, no significant factors. For the defect surface finish, the best results were achieved with the 0.8% formulation of the resin in the mold and application of the paint brush. To obtain the levels of the factors that optimize all defects simultaneously, we performed a weighted average of the results of each type of fault, concluding that the best levels of the factors were: 0.8% resin and addition of iron oxide in the formulation of the template, application of two coats of paint applied with a brush or spray, using hot air in the mold before casting and 24 hours of waiting ready the mold before casting. These levels of the optimized factors were used in an experiment to confirm that ratified the results, helping to reduce rework and consequently reducing costs of cast steel parts.

Relevância:

90.00% 90.00%

Publicador:

Resumo:


Two ferritic/martensitic steels, T91 steel and newly developed SIMP steel, were subject to tensile test after being oxidized in the liquid lead-bismuth eutectic (LBE) at 873 K for 500 h, 1000 h and 2000 h. Tensile tests were also carried out on the steels only thermally aged at 873 K. The result shows that thermal aging has no effect. Exposure to LBE at 873 K leads to a slight decrease in strength, but a large decrease in elongation when tested at 873 K. When tested at 873 K after 2000 h exposure, the tensile strength of T91 decreases slightly, and elongation from 39% to 21%. For SIMP, the decreases are slightly and from 44% to 28%, for tensile strength and elongation, respectively. The room temperature strength has slightly larger percentage reductions after the LBE exposure, but the elongation changes little.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Aligned nanofiber mats were prepared from cellulose acetate using an electrospinning technique. The nanofiber mats were then immersed in an ethanol/acetone mixture. The solvent treatment led to denser, more compact fibrous structure and slight decrease in fiber alignment. It increased fiber diameter and polymer crystallinity within fibers. These effects resulted in increase in the tensile strength of fibrous mats. Solvent treatment may offer a simple, efficient approach to improve the mechanical strength of nanofibrous mats.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Ultra-high strength steel sheets have been subjected to heat treatments that simulate the thermal cycles in hot-dip galvanising and galvannealing processes and evaluated with respect to their resulting mechanical properties and microstructures. The steels contained suitable contents of carbon (∼0.2%), manganese (1.2%) and chromium (0.4%) to ensure that they could be fully transformed to martensite after austenitisation followed by rapid cooling in a continuous annealing line, prior to galvanising. Different contents of vanadium (0–0.1%) and nitrogen (0.002–0.012%) were used to investigate the possible role of these microalloying elements on the strength of the tempered martensite. Vanadium, especially when in combination with a raised nitrogen content, helps to resist the effect of tempering so that a larger proportion of the initial strengthening is preserved after the galvanising cycle, giving tensile strength levels exceeding 1000 MPa. Different deoxidation practices using aluminium or silicon have also been included. These showed similar strength levels at corresponding carbon contents but the bendability of the Si-killed steel sheet was considerably superior. Microstructural examinations have been made on the annealed steels but the reason for the beneficial effect of vanadium is still not fully explained. It is concluded that microalloying with vanadium is a very promising approach in the development of corrosion-resistant ultra-high strength steel sheet products.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Partially aligned and oriented polyacrylonitrile(PAN)-based nanofibers were electrospun from PAN and SWNTs/PAN in the solution of dimethylformamide(DMF) to make the carbon nanofibers. The as-spun nanofibers were hot-stretched in an oven to enhance its orientation and crystallinity. Then it were stabilized at 250 square under a stretched stress, and carbonized at 1000 square in N-2 atmosphere by fixing the length of the stabilized nanofiber to convert them into carbon nanofibers. With this hot-stretched process and with the introduction of SWNTs, the mechanical properties will be enhanced correspondingly. The crystallinity of the stretched fibers confirmed by X-ray diffraction has also increased. For PAN nanofibers, the improved fiber alignment and crystallinity resulted in the increased mechanical properties, such as the modulus and tensile strength of the nanofibers. It was concluded that the hot-stretched nanofiber and the SWNTs/PAN nanofibers can be used as a potential precursor to produce high-performance carbon composites.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this paper, some classroom experiments are described for correcting the common misconception that the operation of a siphon depends on atmospheric pressure. One experiment makes use of a chain model of a siphon and another demonstrates that flow rate is dependent on the height difference between the inflow and outflow of a siphon and not atmospheric pressure. A real-life example of the use of a siphon to refill a lake in South Australia is described, demonstrating that the siphon is not only of academic interest but has practical applications.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Porous mesopore-bioglass (MBG) scaffolds have been proposed as a new class of bone regeneration materials due to their apatite-formation and drug-delivery properties; however, the material’s inherent brittleness and high degradation and surface instability are major disadvantages, which compromise its mechanical strength and cytocompatibility as a biological scaffold. Silk, on the other hand, is a native biomaterial and is well characterized with respect to biocompatibility and tensile strength. In this study we set out to investigate what effects blending silk with MBG had on the physiochemical, drug-delivery and biological properties of MBG scaffolds with a view to bone tissue engineering applications. Transmission electron microscopy (TEM), scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR) were the methods used to analyze the inner microstructure, pore size and morphology, and composition of MBG scaffolds, before and after addition of silk. The effect of silk modification on the mechanical property of MBG scaffolds was determined by testing the compressive strength of the scaffolds and also compressive strength after degradation over time. The drug-delivery potential was evaluated by the release of dexamethasone (DEX) from the scaffolds. Finally, the cytocompatibility of silk-modified scaffolds was investigated by the attachment, morphology, proliferation, differentiation and bone-relative gene expression of bone marrow stromal cells (BMSCs). The results showed that silk modification improved the uniformity and continuity of pore network of MBG scaffolds, and maintained high porosity (94%) and large-pore size (200–400 mm). There was a significant improvement in mechanical strength, mechanical stability, and control of burst release of DEX in silkmodified MBG scaffolds. Silk modification also appeared to provide a better environment for BMSC attachment, spreading, proliferation, and osteogenic differentiation on MBG scaffolds.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The use of ultra-thin films as dressings for cutaneous wounds could prove advantageous in terms of better conformity to wound topography and improved vapour transmission. For this purpose, ultra-thin poly(epsilon-caprolactone) (PCL) films of 5-15 microm thickness were fabricated via a biaxial stretching technique. To evaluate their in vivo biocompatibility and feasibility as an external wound dressing, PCL films were applied over full and partial-thickness wounds in rat and pig models. Different groups of PCL films were used: untreated, NaOH-treated, untreated with fibrin, NaOH-treated with perforations, and NaOH-treated with fibrin and S-nitrosoglutathione. Wounds with no external dressings were used as controls. Wound contraction rate, histology and biomechanical analyses were carried out. Wounds re-epithelialized completely at a comparable rate. Formation of a neo-dermal layer and re-epithelialization were observed in all the wounds. A lower level of fibrosis was observed when PCL films were used, compared to the control wounds. Ultimate tensile strength of the regenerated tissue in rats reached 50-60% of that in native rat skin. Results indicated that biaxially-stretched PCL films did not induce inflammatory reactions when used in vivo as a wound dressing and supported the normal wound healing process in full and partial-thickness wounds.