876 resultados para Spinal cord injuries


Relevância:

100.00% 100.00%

Publicador:

Resumo:

There is a high incidence of infertility in males following traumatic spinal cord injury (SCI). Quality of semen is frequently poor in these patients, but the pathophysiological mechanism(s) causing this are not known. Blood-testis barrier (BTB) integrity following SCI has not previously been examined. The objective of this study was to characterize the effects of spinal contusion injury on the BTB in the rat. 63 adult, male Sprague Dawley rats received SCI (n = 28), laminectomy only (n = 7) or served as uninjured, age-matched controls (n = 28). Using dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI), BTB permeability to the vascular contrast agent gadopentate dimeglumine (Gd) was assessed at either 72 hours-, or 10 months post-SCI. DCE-MRI data revealed that BTB permeability to Gd was greater than controls at both 72 h and 10 mo post-SCI. Histological evaluation of testis tissue showed increased BTB permeability to immunoglobulin G at both 72 hours- and 10 months post-SCI, compared to age-matched sham-operated and uninjured controls. Tight junctional integrity within the seminiferous epithelium was assessed; at 72 hours post-SCI, decreased expression of the tight junction protein occludin was observed. Presence of inflammation in the testes was also examined. High expression of the proinflammatory cytokine interleukin-1 beta was detected in testis tissue. CD68(+) immune cell infiltrate and mast cells were also detected within the seminiferous epithelium of both acute and chronic SCI groups but not in controls. In addition, extensive germ cell apoptosis was observed at 72 h post-SCI. Based on these results, we conclude that SCI is followed by compromised BTB integrity by as early as 72 hours post-injury in rats and is accompanied by a substantial immune response within the testis. Furthermore, our results indicate that the BTB remains compromised and testis immune cell infiltration persists for months after the initial injury.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Promotion of remyelination is an important therapeutic strategy to facilitate functional recovery after traumatic spinal cord injury (SCI). Transplantation of neural stem cells (NSCs) or oligodendrocyte precursor cells (OPCs) has been used to enhance remyelination after SCI. However, the microenvironment in the injured spinal cord is inhibitory for oligodendrocyte (OL) differentiation of NSCs or OPCs. Identifying the signaling pathways that inhibit OL differentiation in the injured spinal cord could lead to new therapeutic strategies to enhance remyelination and functional recovery after SCI. In the present study, we show that reactive astrocytes from the injured rat spinal cord or their conditioned media inhibit OL differentiation of adult OPCs with concurrent promotion of astrocyte differentiation. The expression of bone morphogenetic proteins (BMP) is dramatically increased in the reactive astrocytes and their conditioned media. Importantly, blocking BMP activity by BMP receptor antagonist, noggin, reverse the effects of active astrocytes on OPC differentiation by increasing the differentiation of OL from OPCs while decreasing the generation of astrocytes. These data indicate that the upregulated bone morphogenetic proteins in the reactive astrocytes are major factors to inhibit OL differentiation of OPCs and to promote its astrocyte differentiation. These data suggest that manipulation of BMP signaling in the endogenous or grafted NSCs or OPCs may be a useful therapeutic strategy to increase their OL differentiation and remyelination and enhance functional recovery after SCI.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Magnetic resonance imaging, with its exquisite soft tissue contrast, is an ideal modality for investigating spinal cord pathology. While conventional MRI techniques are very sensitive for spinal cord pathology, their specificity is somewhat limited. Diffusion MRI is an advanced technique which is a very sensitive and specific indicator of the integrity of white matter tracts. Diffusion imaging has been shown to detect early ischemic changes in white matter, while conventional imaging demonstrates no change. By acquiring the complete apparent diffusion tensor (ADT), tissue diffusion properties can be expressed in terms of quantitative and rotationally invariant parameters. ^ Systematic study of SCI in vivo requires controlled animal models such as the popular rat model. To date, studies of spinal cord using ADT imaging have been performed exclusively in fixed, excised spinal cords, introducing inevitable artifacts and losing the benefits of MRI's noninvasive nature. In vivo imaging reflects the actual in vivo tissue properties, and allows each animal to be imaged at multiple time points, greatly reducing the number of animals required to achieve statistical significance. Because the spinal cord is very small, the available signal-to-noise ratio (SNR) is very low. Prior spin-echo based ADT studies of rat spinal cord have relied on high magnetic field strengths and long imaging times—on the order of 10 hours—for adequate SNR. Such long imaging times are incompatible with in vivo imaging, and are not relevant for imaging the early phases following SCI. Echo planar imaging (EPI) is one of the fastest imaging methods, and is popular for diffusion imaging. However, EPI further lowers the image SNR, and is very sensitive to small imperfections in the magnetic field, such as those introduced by the bony spine. Additionally, The small field-of-view (FOV) needed for spinal cord imaging requires large imaging gradients which generate EPI artifacts. The addition of diffusion gradients introduces yet further artifacts. ^ This work develops a method for rapid EPI-based in vivo diffusion imaging of rat spinal cord. The method involves improving the SNR using an implantable coil; reducing magnetic field inhomogeneities by means of an autoshim, and correcting EPI artifacts by post-processing. New EPI artifacts due to diffusion gradients described, and post-processing correction techniques are developed. ^ These techniques were used to obtain rotationally invariant diffusion parameters from 9 animals in vivo, and were validated using the gold-standard, but slow, spinecho based diffusion sequence. These are the first reported measurements of the ADT in spinal cord in vivo . ^ Many of the techniques described are equally applicable toward imaging of human spinal cord. We anticipate that these techniques will aid in evaluating and optimizing potential therapies, and will lead to improved patient care. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Epidemiologic case-control studies of small groups of childhood nervous system tumor patients have suggested that parental employment in occupations with exposure to hydrocarbons is a risk factor for disease. The main focus of this case-control study was to assess the paternal occupation at the time of birth of offspring who later developed childhood intracranial and spinal tumors. All children under 15 years of age dying of such tumors in Texas, during the period 1964-1980, were selected as cases. Disease and demographic data were abstracted from death certificates. The birth certificate for each child of the final group of 499 cases was located and parental occupation information, as well as demographic and obstetric data, were collected. The comparison group consisted of a random sample from all Texas live births with the same birth year, race and sex distribution as the cases.^ The paternal occupations were categorized into broad classifications of those involving hydrocarbon exposure versus those that did not, based on the occupation criteria used in the previous studies. Odds ratios did not indicate any increased risk associated with general paternal hydrocarbon exposure in the workplace. In prior studies, increased risk estimates were detected with narrower groups of occupations involving exposure to hydrocarbon materials. The data from this study were classified according to these groups, and again, no increased risks were indicated except for a statistically insignificant but elevated odds ratio for fathers who were paper and pulp mill workers.^ Odds ratios were calculated for specific occupations and industries previously implicated as risk factors. Significantly associated odds ratios (OR) were detected for electricians (OR = 3.5), especially those working for construction companies (OR = 10.0), for employment in the printing occupations (OR = 4.5), particularly graphic arts workers (OR = 21.9), and in the electronics and electronic machinery industries (OR = 3.5). Analysis of the petroleum refining and chemical industries, which were not found in previous study populations, revealed significantly elevated odds ratios of 3.0 for occupations with probable heavy exposure to chemicals and petroleum compounds and 10.0 for salesmen of chemical products. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

INTRODUCTION Toward the end of the nineteenth century, it was Gowers, Horsley and Macewen who first reported successful surgical procedures for the treatment of subdural extramedullary tumors. Following this, Church and Eisendrath as well as Putnam and Warren reported unsuccessful attempts to treat subpial spinal pathologies in their patients. Only at the beginning of the twentieth century did reports of successful interventions of this type accumulate. In the analysis of these case reports, the authors noticed a certain lack of accuracy about the anatomical allocations and descriptions of intra- and extramedullary spinal lesions. From this, the question of who actually carried out the pioneering works in the early twentieth century in the field of surgery of intramedullary pathologies arose. METHODS Analysis of the relevant original publications of Hans Brun and research on the poorly documented information about his life history by personally contacting contemporary relatives. RESULTS The literature analysis showed that the Swiss neurologist Otto Veraguth and surgeon Hans Brun made fundamental contributions to subpial spinal cord surgery at the very beginning of the last century that remain valid today. According to our research, Hans Brun should be remembered as the third surgeon (after von Eiselsberg and Elsberg) who successfully removed an intramedullary lesion in a patient. CONCLUSION Brun should be remembered as an early and successful surgeon in this specialized field. His operative work is described in detail in this article. At the same time, his achievements in the fields of brain and disc herniation surgery are presented.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Disruption of the blood-brain and blood-spinal cord barriers (BBB and BSCB, respectively) and immune cell infiltration are early pathophysiological hallmarks of multiple sclerosis (MS), its animal model experimental autoimmune encephalomyelitis (EAE), and neuromyelitis optica (NMO). However, their contribution to disease initiation and development remains unclear. In this study, we induced EAE in lys-eGFP-ki mice and performed single, nonterminal intravital imaging to investigate BSCB permeability simultaneously with the kinetics of GFP(+) myeloid cell infiltration. We observed a loss in BSCB integrity within a day of disease onset, which paralleled the infiltration of GFP(+) cells into the CNS and lasted for ∼4 d. Neutrophils accounted for a significant proportion of the circulating and CNS-infiltrating myeloid cells during the preclinical phase of EAE, and their depletion delayed the onset and reduced the severity of EAE while maintaining BSCB integrity. We also show that neutrophils collected from the blood or bone marrow of EAE mice transmigrate more efficiently than do neutrophils of naive animals in a BBB cell culture model. Moreover, using intravital videomicroscopy, we demonstrate that the IL-1R type 1 governs the firm adhesion of neutrophils to the inflamed spinal cord vasculature. Finally, immunostaining of postmortem CNS material obtained from an acutely ill multiple sclerosis patient and two neuromyelitis optica patients revealed instances of infiltrated neutrophils associated with regions of BBB or BSCB leakage. Taken together, our data provide evidence that neutrophils are involved in the initial events that take place during EAE and that they are intimately linked with the status of the BBB/BSCB.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ischaemic spinal cord injury (SCI) remains the Achilles heel of open and endovascular descending thoracic and thoracoabdominal repair. Neurological outcomes have improved coincidentially with the introduction of neuroprotective measures. However, SCI (paraplegia and paraparesis) remains the most devastating complication. The aim of this position paper is to provide physicians with broad information regarding spinal cord blood supply, to share strategies for shortening intraprocedural spinal cord ischaemia and to increase spinal cord tolerance to transitory ischaemia through detection of ischaemia and augmentation of spinal cord blood perfusion. This study is meant to support physicians caring for patients in need of any kind of thoracic or thoracoabdominal aortic repair in decision-making algorithms in order to understand, prevent or reverse ischaemic SCI. Information has been extracted from focused publications available in the PubMed database, which are cohort studies, experimental research reports, case reports, reviews, short series and meta-analyses. Individual chapters of this position paper were assigned and after delivery harmonized by Christian D. Etz, Ernst Weigang and Martin Czerny. Consequently, further writing assignments were distributed within the group and delivered in August 2014. The final version was submitted to the EJCTS for review in September 2014.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND CONTEXT In canine intervertebral disc (IVD) extrusion, a spontaneous animal model of spinal cord injury, hemorrhage is a consistent finding. In rodent models, hemorrhage might be involved in secondary tissue destruction by biochemical mechanisms. PURPOSE This study aimed to investigate a causal association between the extents of intramedullary, subdural and epidural hemorrhage and the severity of spinal cord damage following IVD extrusion in dogs. STUDY DESIGN/SETTING A retrospective study using histologic spinal cord sections from 83 dogs euthanized following IVD extrusion was carried out. METHODS The degree of hemorrhage (intramedullary, subdural, epidural), the degree of spinal cord damage in the epicenter (white and gray matter), and the longitudinal extent of myelomalacia were graded. Associations between the extent of hemorrhage and the degree of spinal cord damage were evaluated statistically. RESULTS Intramedullary and subdural hemorrhages were significantly associated with the degree of white (p<.001/ p=.004) and gray (both p<.001) matter damage, and with the longitudinal extension of myelomalacia (p<.001/p=.005). Intriguingly, accumulation of hemorrhagic cord debris inside or dorsal to a distended and ruptured central canal in segments distant to the epicenter of the lesion was observed exhibiting a wave-like pattern on longitudinal assessment. The occurrence of this debris accumulation was associated with high degrees of tissue destruction (all p<.001). CONCLUSIONS Tissue liquefaction and increased intramedullary pressure associated with hemorrhage are involved in the progression of spinal cord destruction in a canine model of spinal cord injury and ascending or descending myelomalacia. Functional and dynamic studies are needed to investigate this concept further.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

STUDY DESIGN Retrospective data analysis. OBJECTIVES To document fracture characteristics, management and related complications in individuals with traumatic spinal cord injury (SCI). SETTING Rehabilitation centre for SCI individuals. METHOD Patients' records were reviewed. Patients with traumatic SCI and extremity fractures that had occurred after SCI were included. Patient characteristics, fractured bone, fracture localisation, severity and management (operative/conservative), and fracture-related complications were extracted. RESULTS A total of 156 long-bone fractures in 107 SCI patients (34 women and 73 men) were identified. The majority of patients were paraplegics (77.6%) and classified as American Spinal Injury Association Impairment Scale A (86.0%). Only the lower extremities were affected, whereby the femur (60.9% of all fractures) was fractured more frequently than the lower leg (39.1%). A total of 70 patients (65.4%) had one fracture, whereas 37 patients (34.6%) had two or more fractures. Simple or extraarticular fractures were most common (75.0%). Overall, 130 (83.3%) fractures were managed operatively. Approximately half of the femur fractures (48.2%) were treated with locking compression plates. In the lower leg, fractures were mainly managed with external fixation (48.8%). Conservative fracture management was applied in 16.7% of the cases and consisted of braces or a well-padded soft cast. Fracture-associated complications were present in 13.5% of the cases but did not differ significantly between operative (13.1%) and conservative (15.4%) fracture management. CONCLUSION SCI was associated with simple or extraarticular fractures of the distal femur and the lower leg. Fractures were mainly managed operatively with a low complication rate.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The objectives of this study were to describe a new spinal cord injury scale for dogs, evaluate repeatability through determining inter-rater variability of scores, compare these scores to another established system (a modified Frankel scale), and determine if the modified Frankel scale and the newly developed scale were useful as prognostic indicators for return to ambulation. A group of client-owned dogs with spinal cord injury were examined by 2 independent observers who applied the new Texas Spinal Cord Injury Score (TSCIS) and a modified Frankel scale that has been used previously. The newly developed scale was designed to describe gait, postural reactions and nociception in each limb. Weighted kappa statistics were utilized to determine inter-rater variability for the modified Frankel scale and individual components of the TSCIS. Comparisons were made between raters for the overall TSCIS score and between scales using Spearman's rho. An additional group of dogs with surgically treated thoracolumbar disk herniation was enrolled to look at correlation of both scores with spinal cord signal characteristics on magnetic resonance imaging (MRI) and ambulatory outcome at discharge. The actual agreement between raters for the modified Frankel scale was 88%, with a weighted kappa value of 0.93. The TSCIS had weighted kappa scores for gait, proprioceptive positioning and nociception components that ranged from 0.72 to 0.94. Correlation between raters for the overall TSCIS score was Spearman's rho=0.99 (P<0.001). Comparison of the overall TSCIS score to the modified Frankel score resulted in a Spearman's rho value of 0.90 (P<0.001). The modified Frankel score was weakly correlated with the length of hyperintensity of the spinal cord: L2 vertebral body length ratio on mid-sagittal T2-weighted MRI (Spearman's rho=-0.45, P=0.042) as was the overall TSCIS score (Spearman's rho=-0.47, P=0.037). There was also a significant difference in admitting modified Frankel scores (P=0.029) and admitting overall TSCIS scores (P=0.02) between dogs that were ambulatory at discharge and those that were not. Results from this study suggest that the TSCIS is an easy to administer scale for evaluating canine spinal cord injury based on the standard neurological exam and correlates well with a previously described modified Frankel scale.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The utility and inter-session repeatability of sensory threshold measurements using an electronic von Frey anesthesiometer (VFA) were assessed in a group of six neurologically normal dogs. Sensory threshold values obtained in neurologically normal dogs were compared to those of dogs with acute spinal cord injury (SCI) caused by intervertebral disc extrusion (n=6) and to a group of neurologically normal dogs with cranial cruciate ligament rupture (CCLR; n=6). Sensory threshold values in neurologically normal dogs were 155.8 ± 37.7 g and 154.7 ± 67.2 g for the left and right pelvic limbs, respectively. The difference in mean sensory threshold values obtained for the group when two distinct testing sessions were compared was not statistically significant (P>0.05). Mean sensory threshold values for the group with SCI were significantly higher than those for neurologically normal dogs at 351.1 ± 116.5 g and 420.3 ± 157.7 g for the left and right pelvic limbs, respectively (P=0.01). A comparison of sensory threshold values for the group with CCLR and neurologically normal dogs was not statistically significant (P>0.05). The modified dorsal technique for VFA described here represents a reliable method to assess sensory threshold in neurologically normal dogs and in those with SCI.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Magnetic resonance imaging (MRI) is a non-invasive technique that offers excellent soft tissue contrast for characterizing soft tissue pathologies. Diffusion tensor imaging (DTI) is an MRI technique that has shown to have the sensitivity to detect subtle pathology that is not evident on conventional MRI. ^ Rats are commonly used as animal models in characterizing the spinal cord pathologies including spinal cord injury (SCI), cancer, multiple sclerosis, etc. These pathologies could affect both thoracic and cervical regions and complete characterization of these pathologies using MRI requires DTI characterization in both the thoracic and cervical regions. Prior to the application of DTI for investigating the pathologic changes in the spinal cord, it is essential to establish DTI metrics in normal animals. ^ To date, in-vivo DTI studies of rat spinal cord have used implantable coils for high signal-to-noise ratio (SNR) and spin-echo pulse sequences for reduced geometric distortions. Implantable coils have several disadvantages including: (1) the invasive nature of implantation, (2) loss of SNR due to frequency shift with time in the longitudinal studies, and (3) difficulty in imaging the cervical region. While echo planar imaging (EPI) offers much shorter acquisition times compared to spin-echo imaging, EPI is very sensitive to static magnetic field inhomogeneities and the existing shimming techniques implemented on the MRI scanner do not perform well on spinal cord because of its geometry. ^ In this work, an integrated approach has been implemented for in-vivo DTI characterization of rat spinal cord in the thoracic and cervical regions. A three element phased array coil was developed for improved SNR and extended spatial coverage. A field-map shimming technique was developed for minimizing the geometric distortions in EPI images. Using these techniques, EPI based DWI images were acquired with optimized diffusion encoding scheme from 6 normal rats and the DTI-derived metrics were quantified. ^ The phantom studies indicated higher SNR and smaller bias in the estimated DTI metrics than the previous studies in the cervical region. In-vivo results indicated no statistical difference in the DTI characteristics of either gray matter or white matter between the thoracic and cervical regions. ^