951 resultados para Speech Recognition Systems


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Informe de investigación realizado a partir de una estancia en el Équipe de Recherche en Syntaxe et Sémantique de la Université de Toulouse-Le Mirail, Francia, entre julio y setiembre de 2006. En la actualidad existen diversos diccionarios de siglas en línea. Entre ellos sobresalen Acronym Finder, Abbreviations.com y Acronyma; todos ellos dedicados mayoritariamente a las siglas inglesas. Al igual que los diccionarios en papel, este tipo de diccionarios presenta problemas de desactualización por la gran cantidad de siglas que se crean a diario. Por ejemplo, en 2001, un estudio de Pustejovsky et al. mostraba que en los abstracts de Medline aparecían mensualmente cerca de 12.000 nuevas siglas. El mecanismo de actualización empleado por estos recursos es la remisión de nuevas siglas por parte de los usuarios. Sin embargo, esta técnica tiene la desventaja de que la edición de la información es muy lenta y costosa. Un ejemplo de ello es el caso de Abbreviations.com que en octubre de 2006 tenía alrededor de 100.000 siglas pendientes de edición e incorporación definitiva. Como solución a este tipo de problema, se plantea el diseño de sistemas de detección y extracción automática de siglas a partir de corpus. El proceso de detección comporta dos pasos; el primero, consiste en la identificación de las siglas dentro de un corpus y, el segundo, la desambiguación, es decir, la selección de la forma desarrollada apropiada de una sigla en un contexto dado. En la actualidad, los sistemas de detección de siglas emplean métodos basados en patrones, estadística, aprendizaje máquina, o combinaciones de ellos. En este estudio se analizan los principales sistemas de detección y desambiguación de siglas y los métodos que emplean. Cada uno se evalúa desde el punto de vista del rendimiento, medido en términos de precisión (porcentaje de siglas correctas con respecto al número total de siglas extraídas por el sistema) y exhaustividad (porcentaje de siglas correctas identificadas por el sistema con respecto al número total de siglas existente en el corpus). Como resultado, se presentan los criterios para el diseño de un futuro sistema de detección de siglas en español.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

En aquest projecte es fa una introducció als reconeixedors de la parla, el seu funcionament i la seva base matemàtica. Un cop tots els conceptes han quedat clars, es mostra el mètode de creació que hem seguit per obtenir el nostre propi reconeixedor de la parla, utilitzant les eines HTK, en català. S’avaluen les seves virtuts i els seus defectes a través de diferents proves realitzades als seus components. A més a més, el projecte arrodoneix la feina implementant un sistema de dictat automàtic que explota el reconeixedor de la parla utilitzant Julius.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Aplicación que realiza un entrenamiento de puntos de interés en rostros a partir de una colección de imágenes, posteriormente se puede verificar el resultado. Dada una imagen se comprueba el porcentaje de aciertos.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

En esta memoria expone el trabajo que se ha llevado a cabo para intentar crear un sistema de reconocimiento facial.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We investigate whether dimensionality reduction using a latent generative model is beneficial for the task of weakly supervised scene classification. In detail, we are given a set of labeled images of scenes (for example, coast, forest, city, river, etc.), and our objective is to classify a new image into one of these categories. Our approach consists of first discovering latent ";topics"; using probabilistic Latent Semantic Analysis (pLSA), a generative model from the statistical text literature here applied to a bag of visual words representation for each image, and subsequently, training a multiway classifier on the topic distribution vector for each image. We compare this approach to that of representing each image by a bag of visual words vector directly and training a multiway classifier on these vectors. To this end, we introduce a novel vocabulary using dense color SIFT descriptors and then investigate the classification performance under changes in the size of the visual vocabulary, the number of latent topics learned, and the type of discriminative classifier used (k-nearest neighbor or SVM). We achieve superior classification performance to recent publications that have used a bag of visual word representation, in all cases, using the authors' own data sets and testing protocols. We also investigate the gain in adding spatial information. We show applications to image retrieval with relevance feedback and to scene classification in videos

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Positioning a robot with respect to objects by using data provided by a camera is a well known technique called visual servoing. In order to perform a task, the object must exhibit visual features which can be extracted from different points of view. Then, visual servoing is object-dependent as it depends on the object appearance. Therefore, performing the positioning task is not possible in presence of nontextured objets or objets for which extracting visual features is too complex or too costly. This paper proposes a solution to tackle this limitation inherent to the current visual servoing techniques. Our proposal is based on the coded structured light approach as a reliable and fast way to solve the correspondence problem. In this case, a coded light pattern is projected providing robust visual features independently of the object appearance

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Desenvolupament una aplicació informàtica basada en un sistema de visió per computador, la qual permeti donar una resposta en forma d'informació a partir d'una query d'una imatge que conté una escena o objecte en concret de manera que permeti reconèixer els objectes que apareixen en una imatge per llavors donar informació referent al contingut de la imatge a l’usuari que ha fet la consulta. Resumint, es tracta d’analitzar, dissenyar i construir un sistemade visió per computador capaç de reconèixer objectes d’interès en imatges

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Aquest paper es divideix en 3 parts fonamentals, la primera relata el que pretén mostrar aquest estudi, que és aplicar els sistemes actuals de reconeixement facial en una base de dades d'obres d'art. Explica quins mètodes s'utilitzaran i perquè es interessant realitzar aquest estudi. La segona passa a mostrar el detall de les dades obtingudes en l'experiment, amb imatges i gràfics que facilitaran la comprensió. I en l'última part tenim la discussió dels resultats obtinguts en l'anàlisi i les seves posteriors conclusions.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper presents a pattern recognition method focused on paintings images. The purpose is construct a system able to recognize authors or art styles based on common elements of his work (here called patterns). The method is based on comparing images that contain the same or similar patterns. It uses different computer vision techniques, like SIFT and SURF, to describe the patterns in descriptors, K-Means to classify and simplify these descriptors, and RANSAC to determine and detect good results. The method are good to find patterns of known images but not so good if they are not.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Given a set of images of scenes containing different object categories (e.g. grass, roads) our objective is to discover these objects in each image, and to use this object occurrences to perform a scene classification (e.g. beach scene, mountain scene). We achieve this by using a supervised learning algorithm able to learn with few images to facilitate the user task. We use a probabilistic model to recognise the objects and further we classify the scene based on their object occurrences. Experimental results are shown and evaluated to prove the validity of our proposal. Object recognition performance is compared to the approaches of He et al. (2004) and Marti et al. (2001) using their own datasets. Furthermore an unsupervised method is implemented in order to evaluate the advantages and disadvantages of our supervised classification approach versus an unsupervised one

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The project aims at advancing the state of the art in the use of context information for classification of image and video data. The use of context in the classification of images has been showed of great importance to improve the performance of actual object recognition systems. In our project we proposed the concept of Multi-scale Feature Labels as a general and compact method to exploit the local and global context. The feature extraction from the discriminative probability or classification confidence label field is of great novelty. Moreover the use of a multi-scale representation of the feature labels lead to a compact and efficient description of the context. The goal of the project has been also to provide a general-purpose method and prove its suitability in different image/video analysis problem. The two-year project generated 5 journal publications (plus 2 under submission), 10 conference publications (plus 2 under submission) and one patent (plus 1 pending). Of these publications, a relevant number make use of the main result of this project to improve the results in detection and/or segmentation of objects.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Data mining can be defined as the extraction of previously unknown and potentially useful information from large datasets. The main principle is to devise computer programs that run through databases and automatically seek deterministic patterns. It is applied in different fields of application, e.g., remote sensing, biometry, speech recognition, but has seldom been applied to forensic case data. The intrinsic difficulty related to the use of such data lies in its heterogeneity, which comes from the many different sources of information. The aim of this study is to highlight potential uses of pattern recognition that would provide relevant results from a criminal intelligence point of view. The role of data mining within a global crime analysis methodology is to detect all types of structures in a dataset. Once filtered and interpreted, those structures can point to previously unseen criminal activities. The interpretation of patterns for intelligence purposes is the final stage of the process. It allows the researcher to validate the whole methodology and to refine each step if necessary. An application to cutting agents found in illicit drug seizures was performed. A combinatorial approach was done, using the presence and the absence of products. Methods coming from the graph theory field were used to extract patterns in data constituted by links between products and place and date of seizure. A data mining process completed using graphing techniques is called ``graph mining''. Patterns were detected that had to be interpreted and compared with preliminary knowledge to establish their relevancy. The illicit drug profiling process is actually an intelligence process that uses preliminary illicit drug classes to classify new samples. Methods proposed in this study could be used \textit{a priori} to compare structures from preliminary and post-detection patterns. This new knowledge of a repeated structure may provide valuable complementary information to profiling and become a source of intelligence.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Inbreeding depression should select for inbreeding avoidance behaviours. Here we test this hypothesis in two populations of the simultaneous hermaphroditic freshwater snail Physa acuta. We recorded the copulatory behaviour of 288 pairs of sib-mates, non-kin mates from the same population, or non-kin mates from two different populations. We find that kin discriminatory behaviours exist in this species, exclusively expressed by individuals playing the female role. We discuss the relevance of our finding in the context of the evolution of recognition systems and the consequences of such a behaviour in natural populations.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Evaluating other individuals with respect to personality characteristics plays a crucial role in human relations and it is the focus of attention for research in diverse fields such as psychology and interactive computer systems. In psychology, face perception has been recognized as a key component of this evaluation system. Multiple studies suggest that observers use face information to infer personality characteristics. Interactive computer systems are trying to take advantage of these findings and apply them to increase the natural aspect of interaction and to improve the performance of interactive computer systems. Here, we experimentally test whether the automatic prediction of facial trait judgments (e.g. dominance) can be made by using the full appearance information of the face and whether a reduced representation of its structure is sufficient. We evaluate two separate approaches: a holistic representation model using the facial appearance information and a structural model constructed from the relations among facial salient points. State of the art machine learning methods are applied to a) derive a facial trait judgment model from training data and b) predict a facial trait value for any face. Furthermore, we address the issue of whether there are specific structural relations among facial points that predict perception of facial traits. Experimental results over a set of labeled data (9 different trait evaluations) and classification rules (4 rules) suggest that a) prediction of perception of facial traits is learnable by both holistic and structural approaches; b) the most reliable prediction of facial trait judgments is obtained by certain type of holistic descriptions of the face appearance; and c) for some traits such as attractiveness and extroversion, there are relationships between specific structural features and social perceptions.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

El principal objectiu d’aquest projecte és aconseguir classificar diferents vídeos d’esports segons la seva categoria. Els cercadors de text creen un vocabulari segons el significat de les diferents paraules per tal de poder identificar un document. En aquest projecte es va fer el mateix però mitjançant paraules visuals. Per exemple, es van intentar englobar com a una única paraula les diferents rodes que apareixien en els cotxes de rally. A partir de la freqüència amb què apareixien les paraules dels diferents grups dins d’una imatge vàrem crear histogrames de vocabulari que ens permetien tenir una descripció de la imatge. Per classificar un vídeo es van utilitzar els histogrames que descrivien els seus fotogrames. Com que cada histograma es podia considerar un vector de valors enters vàrem optar per utilitzar una màquina classificadora de vectors: una Support vector machine o SVM