827 resultados para Souris knock-out


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Pleiotrophin (PTN) is a secreted growth factor, and also a cytokine, associated with the extracellular matrix, which has recently starting to attract attention as a significant neuromodulator with multiple neuronal functions during development. PTN is expressed in several tissues, where its signals are generally related with cell proliferation, growth, and differentiation by acting through different receptors. In Central Nervous System (CNS), PTN exerts post-developmental neurotrophic and -protective effects, and additionally has been involved in neurodegenerative diseases and neural disorders. Studies in Drosophila shed light on some aspects of the different levels of regulatory control of PTN invertebrate homologs. Specifically in hippocampus, recent evidence from PTN Knock-out (KO) mice involves PTN functioning in learning and memory. In this paper, we summarize, discuss, and contrast the most recent advances and results that lead to proposing a PTN as a neuromodulatory molecule in the CNS, particularly in hippocampus.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Pleiotrophin (PTN) is a secreted growth factor, and also a cytokine, associated with the extracellular matrix, which has recently starting to attract attention as a significant neuromodulator with multiple neuronal functions during development. PTN is expressed in several tissues, where its signals are generally related with cell proliferation, growth, and differentiation by acting through different receptors. In Central Nervous System (CNS), PTN exerts post-developmental neurotrophic and -protective effects, and additionally has been involved in neurodegenerative diseases and neural disorders. Studies in Drosophila shed light on some aspects of the different levels of regulatory control of PTN invertebrate homologs. Specifically in hippocampus, recent evidence from PTN Knock-out (KO) mice involves PTN functioning in learning and memory. In this paper, we summarize, discuss, and contrast the most recent advances and results that lead to proposing a PTN as a neuromodulatory molecule in the CNS, particularly in hippocampus.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Biology is turning into an information science. The science of systems biology seeks to understand the genetic networks that govern organism development and functions. In this study the chicken was used as a model organism in the study of B cell regulatory factors. These studies open new avenues for plasma cell research by connecting the down regulation of the B cell gene expression program directly to the initiation of plasma cell differentiation. The unique advantages of the DT40 avian B cell model system, specifically its high homologous recombination rate, were utilized to study gene regulation in Pax5 knock out cell lines and to gain new insights into the B cell to plasma cell transitions that underlie the secretion of antibodies as part of the adaptive immune response. The Pax5 transcription factor is central to the commitment, development and maintenance of the B cell phenotype. Mice lacking the Pax5 gene have an arrest in development at the pro-B lymphocyte stage while DT40 cells have been derived from cells at a more mature stage of development. The DT40 Pax5-/- cells exhibited gene expression similarities with primary chicken plasma cells. The expression of the plasma cell transcription factors Blimp-1 and XBP-1 were significantly upregulated while the expression of the germinal centre factor BCL6 was diminished in Pax5-/- cells, and this alteration was normalized by Pax5 re-introduction. The Pax5-deficient cells further manifested substantially elevated secretion of IgM into the supernatant, another characteristic of plasma cells. These results for the first time indicated that the downregulation of the Pax5 gene in B cells promotes plasma cell differentiation. Cross-species meta-analysis of chicken and mouse Pax5 gene knockout studies uncovers genes and pathways whose regulatory relationship to Pax5 has remained unchanged for over 300 million years. Restriction of the hematopoietic stem cell fate to produce T, B and NK cell lineages is dependent on the Ikaros and its molecular partners, the closely related Helios and Aiolos. Ikaros family members are zinc finger proteins which act as transcriptional repressors while helping to activate lymphoid genes. Helios in mice is expressed from the hematopoietic stem cell level onwards, although later in development its expression seems to predominate in the T cell lineage. This study establishes the emergence and sequence of the chicken Ikaros family members. Helios expression in the bursa of Fabricius, germinal centres and B cell lines suggested a role for Helios in the avian B-cell lineage, too. Phylogenetic studies of the Ikaros family connect the expansion of the Ikaros family, and thus possibly the emergence of the adaptive immune system, with the second round of genome duplications originally proposed by Ohno. Paralogs that have arisen as a result of genome-wide duplications are sometimes termed ohnologs – Ikaros family proteins appear to fit that definition. This study highlighted the opportunities afforded by the genome sequencing efforts and somatic cell reverse genetics approaches using the DT40 cell line. The DT40 cell line and the avian model system promise to remain a fruitful model for mechanistic insight in the post-genomic era as well.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In mammals, post-testicular sperm maturation taking place in the epididymis is required for the spermatozoa to acquire the abilities required to fertilize the egg in vivo. The epididymal epithelial cells secrete proteins and other small molecules into the lumen, where they interact with the spermatozoa and enable necessary maturational changes. In this study different in silico, in vitro and in vivo approaches were utilized in order to find novel genes responsible for the function of the epididymis and post-testicular sperm maturation in the mouse. Available online genomic databases were analyzed to identify genes potentially expressed in the epididymis, gene expression profiling was performed by studying their expression in different mouse tissues, and significance of certain genes to fertility was assessed by generating genetically modified mouse models. A recently discovered Pate (prostate and testis expression) gene family was found to be predominantly expressed in the epididymis. It represents one of the largest known gene families expressed in the epididymis, and the members code for proteins potentially involved in defense against microorganisms. Through genetically modified mouse models CRISP4 (cysteine-rich secretory protein 4) was identified to regulate sperm acrosome reaction, and BMYC to inhibit the expression of the Myc proto-oncogene in the developing testis. A mouse line expressing iCre recombinase specifically in the epididymis was also generated. This model can be used to generate conditional, epididymis-specific knock-out models, and will be a valuable tool in fertility studies.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Resistance to Trypanosoma cruzi infections is critically dependent on cytokine-mediated activation of cell-mediated immune effector mechanisms. This review focuses on the role of IL-10, TNF-a, IFN-g and IL-12 in controlling T. cruzi replication by the innate and specific immune systems of the vertebrate host. A study performed on mice with disrupted recombinase-activating genes (RAG/KO), which lack T and B lymphocytes, revealed the importance of IL-12, IFN-g and TNF-a in the resistance against T. cruzi mediated by the innate immune system. In addition, data from experiments using IL-10 KO, RAG/KO and double RAG/IL-10 KO mice indicating an in vivo regulatory role of IL-10 in innate and T. cruzi-specific immunity are discussed

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A large number of DNA sequences corresponding to human and animal transcripts have been filed in data banks, as cDNAs or ESTs (expression sequence tags). However, the actual function of their corresponding gene products is still largely unknown. Several of these genes may play a role in regulation of important biological processes such as cell division, differentiation, malignant transformation and oncogenesis. Elucidation of gene function is based on 2 main approaches, namely, overexpression and expression interference, which respectively mimick or suppress a given phenotype. The currently available tools and experimental approaches to gene functional analysis and the most recent advances in mass cDNA screening by functional analysis are discussed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Mammalian spermatozoa gain their fertilizing ability during maturation in the epididymis. Proteins and lipids secreted into the epididymal lumen remodel the sperm membrane, thereby providing the structure necessary for progressive motility and oocyte interaction. In the current study, genetically modified mouse models were utilized to determine the role of novel genes and regulatory systems in the postnatal development and function of the epididymis. Ablation of the mouse β-defensin, Defb41, altered the flagellar movements of sperm and reduced the ability of sperm to bind to the oocyte in vitro. The Defb41-deficient iCre knock-in mouse model was furthermore utilized to generate Dicer1 conditional knock-out (cKO) mice. DICER1 is required for production of mature microRNAs in the regulation of gene expression by RNA interference. Dicer1 cKO gave rise to dedifferentiation of the epididymal epithelium and an altered expression of genes involved in lipid synthesis. As a consequence, the cholesterol:polyunsaturated fatty acid ratio of the Dicer1 cKO sperm membrane was increased, which resulted in membrane instability and infertility. In conclusion, the results of the Defb41 study further support the important role of β-defensin family members in sperm maturation. The regulatory role of Dicer1 was also shown to be required for epididymal development. In addition, the study is the first to show a clear connection between lipid homeostasis in the epididymis and sperm membrane integrity. Taken together, the results give important new evidence on the regulatory system guiding epididymal development and function

Relevância:

80.00% 80.00%

Publicador:

Resumo:

JNK1 is a MAP-kinase that has proven a significant player in the central nervous system. It regulates brain development and the maintenance of dendrites and axons. Several novel phosphorylation targets of JNK1 were identified in a screen performed in the Coffey lab. These proteins were mainly involved in the regulation of neuronal cytoskeleton, influencing the dynamics and stability of microtubules and actin. These structural proteins form the dynamic backbone for the elaborate architecture of the dendritic tree of a neuron. The initiation and branching of the dendrites requires a dynamic interplay between the cytoskeletal building blocks. Both microtubules and actin are decorated by associated proteins which regulate their dynamics. The dendrite-specific, high molecular weight microtubule associated protein 2 (MAP2) is an abundant protein in the brain, the binding of which stabilizes microtubules and influences their bundling. Its expression in non-neuronal cells induces the formation of neurite-like processes from the cell body, and its function is highly regulated by phosphorylation. JNK1 was shown to phosphorylate the proline-rich domain of MAP2 in vivo in a previous study performed in the group. Here we verify three threonine residues (T1619, T1622 and T1625) as JNK1 targets, the phosphorylation of which increases the binding of MAP2 to microtubules. This binding stabilizes the microtubules and increases process formation in non-neuronal cells. Phosphorylation-site mutants were engineered in the lab. The non-phosphorylatable mutant of MAP2 (MAP2- T1619A, T1622A, T1625A) in these residues fails to bind microtubules, while the pseudo-phosphorylated form, MAP2- T1619D, T1622D, Thr1625D, efficiently binds and induces process formation even without the presence of active JNK1. Ectopic expression of the MAP2- T1619D, T1622D, Thr1625D in vivo in mouse brain led to a striking increase in the branching of cortical layer 2/3 (L2/3) pyramidal neurons, compared to MAP2-WT. The dendritic complexity defines the receptive field of a neuron and dictates the output to the postsynaptic cells. Previous studies in the group indicated altered dendrite architecture of the pyramidal neurons in the Jnk1-/- mouse motor cortex. Here, we used Lucifer Yellow loading and Sholl analysis of neurons in order to study the dendritic branching in more detail. We report a striking, opposing effect in the absence of Jnk1 in the cortical layers 2/3 and 5 of the primary motor cortex. The basal dendrites of pyramidal neurons close to the pial surface at L2/3 show a reduced complexity. In contrast, the L5 neurons, which receive massive input from the L2/3 neurons, show greatly increased branching. Another novel substrate identified for JNK1 was MARCKSL1, a protein that regulates actin dynamics. It is highly expressed in neurons, but also in various cancer tissues. Three phosphorylation target residues for JNK1 were identified, and it was demonstrated that their phosphorylation reduces actin turnover and retards migration of these cells. Actin is the main cytoskeletal component in dendritic spines, the site of most excitatory synapses in pyramidal neurons. The density and gross morphology of the Lucifer Yellow filled dendrites were characterized and we show reduced density and altered morphology of spines in the motor cortex and in the hippocampal area CA3. The dynamic dendritic spines are widely considered to function as the cellular correlate during learning. We used a Morris water maze to test spatial memory. Here, the wild-type mice outperformed the knock-out mice during the acquisition phase of the experiment indicating impaired special memory. The L5 pyramidal neurons of the motor cortex project to the spinal cord and regulate the movement of distinct muscle groups. Thus the altered dendrite morphology in the motor cortex was expected to have an effect on the input-output balance in the signaling from the cortex to the lower motor circuits. A battery of behavioral tests were conducted for the wild-type and Jnk1-/- mice, and the knock-outs performed poorly compared to wild-type mice in tests assessing balance and fine motor movements. This study expands our knowledge of JNK1 as an important regulator of the dendritic fields of neurons and their manifestations in behavior.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Desmin is the intermediate filament (IF) protein occurring exclusively in muscle and endothelial cells. There are other IF proteins in muscle such as nestin, peripherin, and vimentin, besides the ubiquitous lamins, but they are not unique to muscle. Desmin was purified in 1977, the desmin gene was characterized in 1989, and knock-out animals were generated in 1996. Several isoforms have been described. Desmin IFs are present throughout smooth, cardiac and skeletal muscle cells, but can be more concentrated in some particular structures, such as dense bodies, around the nuclei, around the Z-line or in costameres. Desmin is up-regulated in muscle-derived cellular adaptations, including conductive fibers in the heart, electric organs, some myopathies, and experimental treatments with drugs that induce muscle degeneration, like phorbol esters. Many molecules have been reported to associate with desmin, such as other IF proteins (including members of the membrane dystroglycan complex), nebulin, the actin and tubulin binding protein plectin, the molecular motor dynein, the gene regulatory protein MyoD, DNA, the chaperone alphaB-crystallin, and proteases such as calpain and caspase. Desmin has an important medical role, since it is used as a marker of tumors' origin. More recently, several myopathies have been described, with accumulation of desmin deposits. Yet, after almost 30 years since its identification, the function of desmin is still unclear. Suggested functions include myofibrillogenesis, mechanical support for the muscle, mitochondrial localization, gene expression regulation, and intracellular signaling. This review focuses on the biochemical interactions of desmin, with a discussion of its putative functions.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Keratins (K) are cytoskeletal proteins mainly expressed in the epithelium and constitute the largest subgroup of intermediate filaments (IFs). Simple epithelial keratins (SEKs) K7-K8 and K18-K20 are the major IF elements in the colon. SEK mutations are known to cause around 30 human diseases, mainly affecting liver and skin. However, so far no strong associations between K8 mutations and the development of human colitis have been found. The keratin contribution to colonic health comes from the K8 knock-out (K8-/-) mouse model, which develops an early chronic inflammation and hyperproliferation in the colon. The aim of this thesis was to investigate how keratins contribute to intestinal health and disease mainly by the experimental analysis using the K8-/- mouse colon and cell culture models. The work described here is divided into three studies. The first study revealed involvement of keratins in Notch1 signaling, which is the master regulator of cell fate in the colon. Immunoprecipitation and immunostaining, both in vitro and in vivo showed that K8 binds and co-localizes with Notch1. Interestingly, overexpression of keratins enhanced Notch1 levels and stabilized Notch intracellular domain (NICD), leading to higher activity of Notch signaling. The dramatic decrease in Notch activity in the K8-/- colon resulted in a differentiation shift towards goblet and enteroendocrine cells. The second study focused on the involvement of keratins in colitis-associated cancer (CAC). Although, the K8-/- inflamed colon did not develop colorectal cancer (CRC) spontaneously, it was dramatically more susceptible to induced CRC in two CRC models: azoxymethane (AOM) and multiple intestinal neoplasia (ApcMin/+). To understand how the loss of K8 contributes to CAC, the epithelial inflammasome signaling pathway was analyzed. The released component of active inflammasome, cleaved caspase-1 and its downstream protein, interleukin (IL)-18, were significantly increased in K8-/- and K8-/-ApcMin/+ colons. The inflammasome pathway has recently been suggested to control the levels of IL-22 binding protein (IL-22BP), which is a negative regulator of IL-22 activity. Interestingly, the activated inflammasome correlated with an upregulation of IL-22 and a complete loss of IL-22BP in the K8-null colons. The activation of IL-22 was confirmed by increased levels of downstream signaling, which is phosphorylated signal transducer and activator of transcription 3 (P-STAT3), a transcription factor promoting proliferation and tissue regeneration in the colon. The objective of the third study, was to examine the role of keratins in colon energy metabolism. A proteomic analysis identified mitochondrial 3-hydroxy-3-methylglutaryl-CoA synthase 2 (HMGCS2) as the major ownregulated protein in the K8-/- colonocytes. HMGCS2 is the rate-limiting enzyme in ketogenesis, where energy from bacterially produced short chain fatty acids (SCFAs), mainly butyrate, is converted into ketone bodies in colonic epithelium. Lower levels and activity of HMGCS2 in the K8-/- colon resulted in a blunted ketogenesis. The studies upstream from HMGCS2, identified decreased levels of the SCFA-transporter monocarboxylate transporter 1 (MCT1), which led to increased SCFA content in the stool suggesting impaired butyrate transport through the colonic epithelium. Taken together, the results of the herein thesis indicate that keratins are essential regulators of colon homeostasis, in particular epithelial differentiation, tumorigenesis and energy metabolism.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

BACKGROUND: The role of ss-catenin signaling in mesodermal lineage formation and differentiation has been elusive. METHODOLOGY: To define the role of ss-catenin signaling in these processes, we used a Dermo1(Twist2)(Cre/+) line to target a floxed beta-catenin allele, throughout the embryonic mesenchyme. Strikingly, the Dermo1(Cre/+); beta-catenin(f/-) conditional Knock Out embryos largely phenocopy Pitx1(-/-)/Pitx2(-/-) double knockout embryos, suggesting that ss-catenin signaling in the mesenchyme depends mostly on the PITX family of transcription factors. We have dissected this relationship further in the developing lungs and find that mesenchymal deletion of beta-catenin differentially affects two major mesenchymal lineages. The amplification but not differentiation of Fgf10-expressing parabronchial smooth muscle progenitor cells is drastically reduced. In the angioblast-endothelial lineage, however, only differentiation into mature endothelial cells is impaired. CONCLUSION: Taken together these findings reveal a hierarchy of gene activity involving ss-catenin and PITX, as important regulators of mesenchymal cell proliferation and differentiation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

La plasticité synaptique activité-dépendante forme la base physiologique de l’apprentissage et de la mémoire dépendants de l’hippocampe. Le rôle joué par les différents sous-types d’interneurones dans l’apprentissage et la mémoire hippocampiques reste inconnu, mais repose probablement sur des mécanismes de la plasticité spécifique aux synapses de certains sous-types d’interneurones. Les synapses excitatrices établies sur les interneurones de l’oriens-alveus dans l’aire CA1 exhibent une forme persistante de potentialisation à long terme induite par la stimulation chimique des récepteurs métabotropiques du glutamate de type 1 (mGluR1) [mGluR1-mediated chemical late long-term potentiation (cL-LTPmGluR1)]. Le présent projet de recherche avait pour objectifs d’identifier les sous-types d’interneurones de l’oriens-alveus exprimant la cL-LTPmGluR1 et d’examiner les mécanismes d’induction et d’expression de celle-ci. Nous avons déterminé que la stimulation répétée des mGluR1 induit de la cL-LTPmGluR1 aux synapses excitatrices établies sur le sous-type d’interneurones exprimant le peptide somatostatine (SOM-INs). Des enregistrements électrophysiologiques couplés à des inhibiteurs pharmacologiques et à un knock-out fonctionnel de mammalian target of rapamycin complexe 1 (mTORC1) ont montré que l’induction de la cL-LTPmGluR1 (qui consiste en trois applications de l’agoniste des mGluR1/5, le (S)-3,5-dihydroxyphénylglycine (DHPG) en présence de l’antagoniste des récepteurs métabotropiques du glutamate de type 5 (mGluR5), le 2-méthyl-6-(phényléthynyl)-pyridine (MPEP)) des SOM-INs requiert les voies de signalisation des mGluR1, de extracellular signal-regulated protein kinase (ERK) et de mTORC1. L’ensemble de nos résultats montre qu’une forme persistante de plasticité synaptique sous-tendue par mTORC1 est induite par la stimulation répétée des mGluR1 dans les interneurones hippocampiques exprimant le peptide somatostatine. La connaissance des mécanismes sous-tendant la cL-LTPmGluR1, couplée à l’utilisation de modèles animal in vivo, rendront maintenant possible le blocage de la cL-LTPmGluR1 dans les SOM-INs et l’examen de son rôle dans l’apprentissage et la mémoire dépendants de l’hippocampe.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Le Costimulateur Inductible (ICOS) est un récepteur exprimé à la surface des cellules T CD4 auxiliaires et T CD8 cytotoxiques. Il fut démontré à l’aide de modèles murins de transplantation de moelle osseuse que ICOS joue un rôle important dans l’induction de la maladie du greffon contre l’hôte aigüe (GVHD). ICOS potentialise deux signaux médiés par le récepteur de cellules T (TCR) : l’activation de la phosphoinositide 3-kinase (PI3K) ainsi que la mobilisation interne de calcium. En conditions in vitro, dans les cellules CD4 et CD8, ICOS réussi à potentialiser le flux de calcium médié par le TCR indépendamment de PI3K. La voie de signalisation de ICOS impliquée dans la GVHD demeure inconnue. Cependant, en utilisant une lignée de souris ‘knock-in’ nommée ICOS-Y181F, dans laquelle le cellules T ont sélectivement perdu la capacité d’activer PI3K par l’entremise d’ICOS, nous avons démontré que les cellules T peuvent utiliser un mécanisme ICOS indépendant de PI3K afin d’induire la GVHD. La mobilisation interne du Ca2+ mène à l’activation de NFAT, un facteur de transcription clé régulant des gènes comme IFN-γ, qui exprime une des cytokines clés impliquées dans la GVHD. Nous émettons comme hypothèse que la capacité pathogénique intacte des cellules T ICOSY181F à induire la GVHD, repose sur la signalisation du Ca2+ indépendante de PI3K. Le but de mon projet est d’identifier les résidus responsables de cette signalisation de Ca2+ médiée par ICOS ainsi que le mécanisme par lequel ce récepteur fonctionne. À l’aide de la mutagénèse dirigée, j’ai généré des mutants d’ICOS et j’ai analysé par cytométrie en flux leur capacité à activer le flux de Ca2+. J’ai ainsi identifié un groupe de lysine sur la queue cytoplasmique d’ICOS situé à proximité de la membrane comme étant essentiel à la fonction de potentialisation du flux de Ca2+. Je fournis également des preuves de l’implication de la kinase Lck, membre de la famille de kinases Src, dans la voie de signalisation de ICOS médiant la potentialisation du flux de Ca2+. Ainsi, ICOS s’associe à Lck et mène à une augmentation de l’activation de PLCγ1, la protéine effectrice clé causant la sortie de Ca2+ de la réserve intracellulaire. En conclusion, notre étude permet de comprendre davantage une des voies de signalisation d’ICOS. L’influx de Ca2+ dans les cellules T implique la voie ICOS-Lck-PLCγ1. Une compréhension plus approfondie de cette voie de signalisation pourrait s’avérer bénéfique afin d’élaborer de nouvelles stratégies menant à la prévention de maladies reliées à ICOS, comme la GVHD.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The focus of self-assembly as a strategy for the synthesis has been confined largely to molecules, because of the importance of manipulating the structure of matter at the molecular scale. We have investigated the influence of temperature and pH, in addition to the concentration of the capping agent used for the formation of the nano-bio conjugates. For example, the formation of the narrower size distribution of the nanoparticles was observed with the increase in the concentration of the protein, which supports the fact that γ-globulin acts both as a controller of nucleation as well as stabiliser. As analyzed through various photophysical, biophysical and microscopic techniques such as TEM, AFM, C-AFM, SEM, DLS, OPM, CD and FTIR, we observed that the initial photoactivation of γ-globulin at pH 12 for 3 h resulted in small protein fibres of ca. Further irradiation for 24 h, led to the formation of selfassembled long fibres of the protein of ca. 5-6 nm and observation of surface plasmon resonance band at around 520 nm with the concomitant quenching of luminescence intensity at 680 nm. The observation of light triggered self-assembly of the protein and its effect on controlling the fate of the anchored nanoparticles can be compared with the naturally occurring process such as photomorphogenesis.Furthermore,our approach offers a way to understand the role played by the self-assembly of the protein in ordering and knock out of the metal nanoparticles and also in the design of nano-biohybrid materials for medicinal and optoelectronic applications. Investigation of the potential applications of NIR absorbing and water soluble squaraine dyes 1-3 for protein labeling and anti-amyloid agents forms the subject matter of the third chapter of the thesis. The study of their interactions with various proteins revealed that 1-3 showed unique interactions towards serum albumins as well as lysozyme. 69%, 71% and 49% in the absorption spectra as well as significant quenching in the fluorescence intensity of the dyes 1-3, respectively. Half-reciprocal analysis of the absorption data and isothermal titration calorimetric (ITC) analysis of the titration experiments gave a 1:1 stoichiometry for the complexes formed between the lysozyme and squaraine dyes with association constants (Kass) in the range 104-105 M-1. We have determined the changes in the free energy (ΔG) for the complex formation and the values are found to be -30.78, -32.31 and -28.58 kJmol-1, respectively for the dyes 1, 2 and 3. Furthermore, we have observed a strong induced CD (ICD) signal corresponding to the squaraine chromophore in the case of the halogenated squaraine dyes 2 and 3 at 636 and 637 nm confirming the complex formation in these cases. To understand the nature of interaction of the squaraine dyes 1-3 with lysozyme, we have investigated the interaction of dyes 1-3 with different amino acids. These results indicated that the dyes 1-3 showed significant interactions with cysteine and glutamic acid which are present in the side chains of lysozyme. In addition the temperature dependent studies have revealed that the interaction of the dye and the lysozyme are irreversible. Furthermore, we have investigated the interactions of these NIR dyes 1-3 with β- amyloid fibres derived from lysozyme to evaluate their potential as inhibitors of this biologically important protein aggregation. These β-amyloid fibrils were insoluble protein aggregates that have been associated with a range of neurodegenerative diseases, including Huntington, Alzheimer’s, Parkinson’s, and Creutzfeldt-Jakob diseases. We have synthesized amyloid fibres from lysozyme through its incubation in acidic solution below pH 4 and by allowing to form amyloid fibres at elevated temperature. To quantify the binding affinities of the squaraine dyes 1-3 with β-amyloids, we have carried out the isothermal titration calorimetric (ITC) measurements. The association constants were determined and are found to be 1.2 × 105, 3.6× 105 and 3.2 × 105 M-1 for the dyes, 1-3, respectively. To gain more insights into the amyloid inhibiting nature of the squaraine dyes under investigations, we have carried out thioflavin assay, CD, isothermal titration calorimetry and microscopic analysis. The addition of the dyes 1-3 (5μM) led to the complete quenching in the apparent thioflavin fluorescence, thereby indicating the destabilization of β-amyloid fibres in the presence of the squaraine dyes. Further, the inhibition of the amyloid fibres by the squaraine dyes 1-3, has been evidenced though the DLS, TEM AFM and SAED, wherein we observed the complete destabilization of the amyloid fibre and transformation of the fibre into spherical particles of ca. These results demonstrate the fact that the squaraine dyes 1-3 can act as protein labeling agents as well as the inhibitors of the protein amyloidogenesis. The last chapter of the thesis describes the synthesis and investigation of selfassembly as well as bio-imaging aspects of a few novel tetraphenylethene conjugates 4-6.Expectedly, these conjugates showed significant solvatochromism and exhibited a hypsochromic shift (negative solvatochromism) as the solvent polarity increased, and these observations were justified though theoretical studies employing the B3LYP/6-31g method. We have investigated the self-assembly properties of these D-A conjugates though variation in the percentage of water in acetonitrile solution due to the formation of nanoaggregates. Further the contour map of the observed fluorescence intensity as a function of the fluorescence excitation and emission wavelength confirmed the formation of J-type aggregates in these cases. To have a better understanding of the type of self-assemblies formed from the TPE conjugates 4-6, we have carried out the morphological analysis through various microscopic techniques such as DLS, SEM and TEM. 70%, we observed rod shape architectures having ~ 780 nm in diameter and ~ 12 μM in length as evidenced through TEM and SEM analysis. We have made similar observations with the dodecyl conjugate 5 at ca. 70% and 50% water/acetonitrile mixtures, the aggregates formed from 4 and 5 were found to be highly crystalline and such structures were transformed to amorphous nature as the water fraction was increased to 99%. To evaluate the potential of the conjugate as bio-imaging agents, we have carried out their in vitro cytotoxicity and cellular uptake studies though MTT assay, flow cytometric and confocal laser scanning microscopic techniques. Thus nanoparticle of these conjugates which exhibited efficient emission, large stoke shift, good stability, biocompatibility and excellent cellular imaging properties can have potential applications for tracking cells as well as in cell-based therapies. In summary we have synthesized novel functional organic chromophores and have studied systematic investigation of self-assembly of these synthetic and biological building blocks under a variety of conditions. The investigation of interaction of water soluble NIR squaraine dyes with lysozyme indicates that these dyes can act as the protein labeling agents and the efficiency of inhibition of β-amyloid indicate, thereby their potential as anti-amyloid agents.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

RNA interference (RNAi) is a recently discovered process, in which double stranded RNA (dsRNA) triggers the homology-dependant degradation of cognate messenger RNA (mRNA). In a search for new components of the RNAi machinery in Dictyostelium, a new gene was identified, which was called helF. HelF is a putative RNA helicase, which shows a high homology to the helicase domain of Dicer, to the helicase domain of Dictyostelium RdRP and to the C. elegans gene drh-1, that codes for a dicer related DExH-box RNA helicase, which is required for RNAi. The aim of the present Ph.D. work was to investigate the role of HelF in PTGS, either induced by RNAi or asRNA. A genomic disruption of the helF gene was performed, which resulted in a distinct mutant morphology in late development. The cellular localization of the protein was elucidated by creating a HelF-GFP fusion protein, which was found to be localized in speckles in the nucleus. The involvement of HelF in the RNAi mechanism was studied. For this purpose, RNAi was induced by transformation of RNAi hairpin constructs against four endogenous genes in wild type and HelF- cells. The silencing efficiency was strongly enhanced in the HelF K.O. strain in comparison with the wild type. One gene, which could not be silenced in the wild type background, was successfully silenced in HelF-. When the helF gene was disrupted in a secondary transformation in a non-silenced strain, the silencing efficiency was strongly improved, a phenomenon named here “retrosilencing”. Transcriptional run-on experiments revealed that the enhanced gene silencing in HelF- was a posttranscriptional event, and that the silencing efficiency depended on the transcription levels of hairpin RNAs. In HelF-, the threshold level of hairpin transcription required for efficient silencing was dramatically lowered. The RNAi-mediated silencing was accompanied by the production of siRNAs; however, their amount did not depend on the level of hairpin transcription. These results indicated that HelF is a natural suppressor of RNAi in Dictyostelium. In contrast, asRNA mediated gene silencing was not enhanced in the HelF K.O, as shown for three tested genes. These results confirmed previous observations (H. Martens and W. Nellen, unpublished) that although similar, RNAi and asRNA mediated gene silencing mechanisms differ in their requirements for specific proteins. In order to characterize the function of the HelF protein on a molecular level and to study its interactions with other RNAi components, in vitro experiments were performed. Besides the DEAH-helicase domain, HelF contains a double-stranded RNA binding domain (dsRBD) at its N-terminus, which showed high similarity to the dsRBD domain of Dicer A from Dictyostelium. The ability of the recombinant dsRBDs from HelF and Dicer A to bind dsRNA was examined and compared. It was shown by gel-shift assays that both HelF-dsRBD and Dicer-dsRBD could bind directly to long dsRNAs. However, HelF-dsRBD bound more efficiently to dsRNA with imperfect matches than to perfect dsRNA. Both dsRBDs bound specifically to a pre-miRNA substrate (pre-let-7). The results suggested that most probably there were two binding sites for the proteins on the pre-miRNA substrate. Moreover, it was shown that HelF-dsRBD and Dicer-dsRBD have siRNA-binding activity. The affinities of the two dsRBDs to the pre-let-7 substrate were also examined by plasmon surface resonance analyses, which revealed a 9-fold higher binding affinity of the Dicer-dsRBD to pre-let-7 compared to that of the HelF-dsRBD. The binding of HelF-dsRBD to the pre-let-7 was impaired in the presence of Mg2+, while the Dicer-dsRBD interaction with pre-let-7 was not influenced by the presence of Mg2+. The results obtained in this thesis can be used to postulate a model for HelF function. In this, HelF acts as a nuclear suppressor of RNAi in wild type cells by recognition and binding of dsRNA substrates. The protein might act as a surveillance system to avoid RNAi initiation by fortuitous dsRNA formation or low abundance of dsRNA trigger. If the protein acts as an RNA helicase, it could unwind fold-back structures in the nucleus and thus lead to decreased RNAi efficiency. A knock-out of HelF would result in initiation of the RNAi pathway even by low levels of dsRNA. The exact molecular function of the protein in the RNAi mechanism still has to be elucidated. RNA interferenz (RNAi) ist ein in jüngster Zeit entdeckter Mechanismus, bei dem doppelsträngige RNA Moleküle (dsRNA) eine Homologie-abhängige Degradation einer verwandten messenger-RNA (mRNA) auslösen. Auf der Suche nach neuen Komponenten der RNAi-Maschinerie in Dictyostelium konnte ein neues Gen (helF) identifiziert werden. HelF ist eine putative RNA-Helikase mit einer hohen Homologie zur Helikasedomäne der bekannten Dicerproteine, der Helikasedomäne der Dictyostelium RdRP und zu dem C. elegans Gen drh-1, welches für eine Dicer-bezogene DExH-box RNA Helikase codiert, die am RNAi-Mechanismus beteiligt ist. Das Ziel dieser Arbeit war es, die Funktion von HelF im Zusammenhang des RNAi oder asRNA induzierten PTGS zu untersuchen. Es wurde eine Unterbrechung des helF-Gens auf genomischer Ebene (K.O.) vorgenommen, was bei den Mutanten zu einer veränderten Morphologie in der späten Entwicklung führte. Die Lokalisation des Proteins in der Zelle konnte mit Hilfe einer GFP-Fusion analysiert werden und kleinen Bereichen innerhalb des Nukleus zugewiesen werden. Im Weiteren wurde der Einfluss von HelF auf den RNAi-Mechanismus untersucht. Zu diesem Zweck wurde RNAi durch Einbringen von RNAi Hairpin-Konstrukten gegen vier endogene Gene im Wiltypstamm und der HelF--Mutante induziert. Im Vergleich zum Wildtypstamm konnte im HelF--Mutantenstamm eine stark erhöhte „Silencing“-Effizienz nachgewiesen werden. Ein Gen, welches nach RNAi Initiation im Wildtypstamm unverändert blieb, konnte im HelF--Mutantenstamm erfolgreich stillgelegt werden. Durch sekundäres Einführen einer Gendisruption im helF-Locus in einen Stamm, in welchem ein Gen nicht stillgelegt werden konnte, wurde die Effizienz des Stilllegens deutlich erhöht. Dieses Phänomen wurde hier erstmals als „Retrosilencing“ beschrieben. Mit Hilfe von transkriptionellen run-on Experimenten konnte belegt werden, dass es sich bei dieser erhöhten Stilllegungseffizienz um ein posttranskriptionelles Ereignis handelte, wobei die Stillegungseffizienz von der Transkriptionsstärke der Hairpin RNAs abhängt. Für die HelF--Mutanten konnte gezeigt werden, dass der Schwellenwert zum Auslösen eines effizienten Stillegens dramatisch abgesenkt war. Obwohl die RNAi-vermittelte Genstilllegung immer mit der Produktion von siRNAs einhergeht, war die Menge der siRNAs nicht abhängig von dem Expressionsniveau des Hairpin-Konstruktes. Diese Ergebnisse legen nahe, dass es sich bei der HelF um einen natürlichen Suppressor des RNAi-Mechanismus in Dictyostelium handelt. Im Gegensatz hierzu war die as-vermittelte Stilllegung von drei untersuchten Genen im HelF-K.O. im Vergleich zum Wildyp unverändert. Diese Ergebnisse bestätigten frühere Beobachtungen (H. Martens und W. Nellen, unveröffentlicht), wonach die Mechanismen für RNAi und asRNA-vermittelte Genstilllegung unterschiedliche spezifische Proteine benötigen. Um die Funktion des HelF-Proteins auf der molekularen Ebene genauer zu charakterisieren und die Interaktion mit anderen RNAi-Komponenten zu untersuchen, wurden in vitro Versuche durchgeführt. Das HelF-Protein enthält, neben der DEAH-Helikase-Domäne eine N-terminale Doppelstrang RNA bindende Domäne (dsRBD) mit einer hohen Ähnlichkeit zu der dsRBD des Dicer A aus Dictyostelium. Die dsRNA-Bindungsaktivität der beiden dsRBDs aus HelF und Dicer A wurde analysiert und verglichen. Es konnte mithilfe von Gel-Retardationsanalysen gezeigt werden, dass sowohl HelF-dsRBD als auch Dicer-dsRBD direkt an lange dsRNAs binden können. Hierbei zeigte sich, dass die HelF-dsRBD eine höhere Affinität zu einem imperfekten RNA-Doppelstrang besitzt, als zu einer perfekt gepaarten dsRNA. Für beide dsRBDs konnte eine spezifische Bindung an ein pre-miRNA Substrat nachgewiesen werden (pre-let-7). Dieses Ergebnis legt nah, dass es zwei Bindestellen für die Proteine auf dem pre-miRNA Substrat gibt. Überdies hinaus konnte gezeigt werden, dass die dsRBDs beider Proteine eine siRNA bindende Aktivität besitzen. Die Affinität beider dsRBDs an das pre-let-7 Substrat wurde weiterhin mit Hilfe der Plasmon Oberflächen Resonanz untersucht. Hierbei konnte eine 9-fach höhere Bindeaffinität der Dicer-dsRBD im Vergleich zur HelF-dsRBD nachgewiesen werden. Während die Bindung der HelF-dsRBD an das pre-let-7 durch die Anwesenheit von Mg2+ beeinträchtigt war, zeigte sich kein Einfluß von Mg2+ auf das Bindeverhalten der Dicer-dsRBD. Mit Hilfe der in dieser Arbeit gewonnen Ergebnisse lässt sich ein Model für die Funktion von HelF postulieren. In diesem Model wirkt HelF durch Erkennen und Binden von dsRNA Substraten als Suppressor von der RNAi im Kern. Das Protein kann als Überwachungsystem gegen eine irrtümliche Auslösung von RNAi wirken, die durch zufällige dsRNA Faltungen oder eine zu geringe Häufigkeit der siRNAs hervorgerufen sein könnte. Falls das Protein eine Helikase-Aktivität besitzt, könnte es rückgefaltete RNA Strukturen im Kern auflösen, was sich in einer verringerten RNAi-Effizienz wiederspiegelt. Durch Ausschalten des helF-Gens würde nach diesem Modell eine erfolgreiche Auslösung von RNAi schon bei sehr geringer Mengen an dsRNA möglich werden. Das Modell erlaubt, die exakte molekulare Funktion des HelF-Proteins im RNAi-Mechanismus weiter zu untersuchen.