958 resultados para Source code (Computer science)
Resumo:
Interactive theorem provers (ITP for short) are tools whose final aim is to certify proofs written by human beings. To reach that objective they have to fill the gap between the high level language used by humans for communicating and reasoning about mathematics and the lower level language that a machine is able to “understand” and process. The user perceives this gap in terms of missing features or inefficiencies. The developer tries to accommodate the user requests without increasing the already high complexity of these applications. We believe that satisfactory solutions can only come from a strong synergy between users and developers. We devoted most part of our PHD designing and developing the Matita interactive theorem prover. The software was born in the computer science department of the University of Bologna as the result of composing together all the technologies developed by the HELM team (to which we belong) for the MoWGLI project. The MoWGLI project aimed at giving accessibility through the web to the libraries of formalised mathematics of various interactive theorem provers, taking Coq as the main test case. The motivations for giving life to a new ITP are: • study the architecture of these tools, with the aim of understanding the source of their complexity • exploit such a knowledge to experiment new solutions that, for backward compatibility reasons, would be hard (if not impossible) to test on a widely used system like Coq. Matita is based on the Curry-Howard isomorphism, adopting the Calculus of Inductive Constructions (CIC) as its logical foundation. Proof objects are thus, at some extent, compatible with the ones produced with the Coq ITP, that is itself able to import and process the ones generated using Matita. Although the systems have a lot in common, they share no code at all, and even most of the algorithmic solutions are different. The thesis is composed of two parts where we respectively describe our experience as a user and a developer of interactive provers. In particular, the first part is based on two different formalisation experiences: • our internship in the Mathematical Components team (INRIA), that is formalising the finite group theory required to attack the Feit Thompson Theorem. To tackle this result, giving an effective classification of finite groups of odd order, the team adopts the SSReflect Coq extension, developed by Georges Gonthier for the proof of the four colours theorem. • our collaboration at the D.A.M.A. Project, whose goal is the formalisation of abstract measure theory in Matita leading to a constructive proof of Lebesgue’s Dominated Convergence Theorem. The most notable issues we faced, analysed in this part of the thesis, are the following: the difficulties arising when using “black box” automation in large formalisations; the impossibility for a user (especially a newcomer) to master the context of a library of already formalised results; the uncomfortable big step execution of proof commands historically adopted in ITPs; the difficult encoding of mathematical structures with a notion of inheritance in a type theory without subtyping like CIC. In the second part of the manuscript many of these issues will be analysed with the looking glasses of an ITP developer, describing the solutions we adopted in the implementation of Matita to solve these problems: integrated searching facilities to assist the user in handling large libraries of formalised results; a small step execution semantic for proof commands; a flexible implementation of coercive subtyping allowing multiple inheritance with shared substructures; automatic tactics, integrated with the searching facilities, that generates proof commands (and not only proof objects, usually kept hidden to the user) one of which specifically designed to be user driven.
Resumo:
A feature represents a functional requirement fulfilled by a system. Since many maintenance tasks are expressed in terms of features, it is important to establish the correspondence between a feature and its implementation in source code. Traditional approaches to establish this correspondence exercise features to generate a trace of runtime events, which is then processed by post-mortem analysis. These approaches typically generate large amounts of data to analyze. Due to their static nature, these approaches do not support incremental and interactive analysis of features. We propose a radically different approach called live feature analysis, which provides a model at runtime of features. Our approach analyzes features on a running system and also makes it possible to grow feature representations by exercising different scenarios of the same feature, and identifies execution elements even to the sub-method level. We describe how live feature analysis is implemented effectively by annotating structural representations of code based on abstract syntax trees. We illustrate our live analysis with a case study where we achieve a more complete feature representation by exercising and merging variants of feature behavior and demonstrate the efficiency or our technique with benchmarks.
Resumo:
Much of the knowledge about software systems is implicit, and therefore difficult to recover by purely automated techniques. Architectural layers and the externally visible features of software systems are two examples of information that can be difficult to detect from source code alone, and that would benefit from additional human knowledge. Typical approaches to reasoning about data involve encoding an explicit meta-model and expressing analyses at that level. Due to its informal nature, however, human knowledge can be difficult to characterize up-front and integrate into such a meta-model. We propose a generic, annotation-based approach to capture such knowledge during the reverse engineering process. Annotation types can be iteratively defined, refined and transformed, without requiring a fixed meta-model to be defined in advance. We show how our approach supports reverse engineering by implementing it in a tool called Metanool and by applying it to (i) analyzing architectural layering, (ii) tracking reengineering tasks, (iii) detecting design flaws, and (iv) analyzing features.
Resumo:
Mainstream IDEs such as Eclipse support developers in managing software projects mainly by offering static views of the source code. Such a static perspective neglects any information about runtime behavior. However, object-oriented programs heavily rely on polymorphism and late-binding, which makes them difficult to understand just based on their static structure. Developers thus resort to debuggers or profilers to study the system's dynamics. However, the information provided by these tools is volatile and hence cannot be exploited to ease the navigation of the source space. In this paper we present an approach to augment the static source perspective with dynamic metrics such as precise runtime type information, or memory and object allocation statistics. Dynamic metrics can leverage the understanding for the behavior and structure of a system. We rely on dynamic data gathering based on aspects to analyze running Java systems. By solving concrete use cases we illustrate how dynamic metrics directly available in the IDE are useful. We also comprehensively report on the efficiency of our approach to gather dynamic metrics.
Resumo:
Maintaining object-oriented systems that use inheritance and polymorphism is difficult, since runtime information, such as which methods are actually invoked at a call site, is not visible in the static source code. We have implemented Senseo, an Eclipse plugin enhancing Eclipse's static source views with various dynamic metrics, such as runtime types, the number of objects created, or the amount of memory allocated in particular methods.
Resumo:
In order to analyze software systems, it is necessary to model them. Static software models are commonly imported by parsing source code and related data. Unfortunately, building custom parsers for most programming languages is a non-trivial endeavour. This poses a major bottleneck for analyzing software systems programmed in languages for which importers do not already exist. Luckily, initial software models do not require detailed parsers, so it is possible to start analysis with a coarse-grained importer, which is then gradually refined. In this paper we propose an approach to "agile modeling" that exploits island grammars to extract initial coarse-grained models, parser combinators to enable gradual refinement of model importers, and various heuristics to recognize language structure, keywords and other language artifacts.
Resumo:
Time-based indoor localization has been investigated for several years but the accuracy of existing solutions is limited by several factors, e.g., imperfect synchronization, signal bandwidth and indoor environment. In this paper, we compare two time-based localization algorithms for narrow-band signals, i.e., multilateration and fingerprinting. First, we develop a new Linear Least Square (LLS) algorithm for Differential Time Difference Of Arrival (DTDOA). Second, fingerprinting is among the most successful approaches used for indoor localization and typically relies on the collection of measurements on signal strength over the area of interest. We propose an alternative by constructing fingerprints of fine-grained time information of the radio signal. We offer comprehensive analytical discussions on the feasibility of the approaches, which are backed up by evaluations in a software defined radio based IEEE 802.15.4 testbed. Our work contributes to research on localization with narrow-band signals. The results show that our proposed DTDOA-based LLS algorithm obviously improves the localization accuracy compared to traditional TDOA-based LLS algorithm but the accuracy is still limited because of the complex indoor environment. Furthermore, we show that time-based fingerprinting is a promising alternative to power-based fingerprinting.
Resumo:
In this work, we provide a passive location monitoring system for IEEE 802.15.4 signal emitters. The system adopts software defined radio techniques to passively overhear IEEE 802.15.4 packets and to extract power information from baseband signals. In our system, we provide a new model based on the nonlinear regression for ranging. After obtaining distance information, a Weighted Centroid (WC) algorithm is adopted to locate users. In WC, each weight is inversely proportional to the nth power of propagation distance, and the degree n is obtained from some initial measurements. We evaluate our system in a 16m-18m area with complex indoor propagation conditions. We are able to achieve a median error of 2:1m with only 4 anchor nodes.
Resumo:
Software dependencies play a vital role in programme comprehension, change impact analysis and other software maintenance activities. Traditionally, these activities are supported by source code analysis; however, the source code is sometimes inaccessible or difficult to analyse, as in hybrid systems composed of source code in multiple languages using various paradigms (e.g. object-oriented programming and relational databases). Moreover, not all stakeholders have adequate knowledge to perform such analyses. For example, non-technical domain experts and consultants raise most maintenance requests; however, they cannot predict the cost and impact of the requested changes without the support of the developers. We propose a novel approach to predicting software dependencies by exploiting the coupling present in domain-level information. Our approach is independent of the software implementation; hence, it can be used to approximate architectural dependencies without access to the source code or the database. As such, it can be applied to hybrid systems with heterogeneous source code or legacy systems with missing source code. In addition, this approach is based solely on information visible and understandable to domain users; therefore, it can be efficiently used by domain experts without the support of software developers. We evaluate our approach with a case study on a large-scale enterprise system, in which we demonstrate how up to 65 of the source code dependencies and 77% of the database dependencies are predicted solely based on domain information.
Resumo:
Software corpora facilitate reproducibility of analyses, however, static analysis for an entire corpus still requires considerable effort, often duplicated unnecessarily by multiple users. Moreover, most corpora are designed for single languages increasing the effort for cross-language analysis. To address these aspects we propose Pangea, an infrastructure allowing fast development of static analyses on multi-language corpora. Pangea uses language-independent meta-models stored as object model snapshots that can be directly loaded into memory and queried without any parsing overhead. To reduce the effort of performing static analyses, Pangea provides out-of-the box support for: creating and refining analyses in a dedicated environment, deploying an analysis on an entire corpus, using a runner that supports parallel execution, and exporting results in various formats. In this tool demonstration we introduce Pangea and provide several usage scenarios that illustrate how it reduces the cost of analysis.
Resumo:
Imprecise manipulation of source code (semi-parsing) is useful for tasks such as robust parsing, error recovery, lexical analysis, and rapid development of parsers for data extraction. An island grammar precisely defines only a subset of a language syntax (islands), while the rest of the syntax (water) is defined imprecisely. Usually, water is defined as the negation of islands. Albeit simple, such a definition of water is naive and impedes composition of islands. When developing an island grammar, sooner or later a programmer has to create water tailored to each individual island. Such an approach is fragile, however, because water can change with any change of a grammar. It is time-consuming, because water is defined manually by a programmer and not automatically. Finally, an island surrounded by water cannot be reused because water has to be defined for every grammar individually. In this paper we propose a new technique of island parsing - bounded seas. Bounded seas are composable, robust, reusable and easy to use because island-specific water is created automatically. We integrated bounded seas into a parser combinator framework as a demonstration of their composability and reusability.
Resumo:
Polymorphism, along with inheritance, is one of the most important features in object-oriented languages, but it is also one of the biggest obstacles to source code comprehension. Depending on the run-time type of the receiver of a message, any one of a number of possible methods may be invoked. Several algorithms for creating accurate call-graphs using static analysis already exist, however, they consume significant time and memory resources. We propose an approach that will combine static and dynamic analysis and yield the best possible precision with a minimal trade-off between used resources and accuracy.
Resumo:
Software developers are often unsure of the exact name of the method they need to use to invoke the desired behavior in a given context. This results in a process of searching for the correct method name in documentation, which can be lengthy and distracting to the developer. We can decrease the method search time by enhancing the documentation of a class with the most frequently used methods. Usage frequency data for methods is gathered by analyzing other projects from the same ecosystem - written in the same language and sharing dependencies. We implemented a proof of concept of the approach for Pharo Smalltalk and Java. In Pharo Smalltalk, methods are commonly searched for using a code browser tool called "Nautilus", and in Java using a web browser displaying HTML based documentation - Javadoc. We developed plugins for both browsers and gathered method usage data from open source projects, in order to increase developer productivity by reducing method search time. A small initial evaluation has been conducted showing promising results in improving developer productivity.
Resumo:
Software developers are often unsure of the exact name of the API method they need to use to invoke the desired behavior. Most state-of-the-art documentation browsers present API artefacts in alphabetical order. Albeit easy to implement, alphabetical order does not help much: if the developer knew the name of the required method, he could have just searched for it in the first place. In a context where multiple projects use the same API, and their source code is available, we can improve the API presentation by organizing the elements in the order in which they are more likely to be used by the developer. Usage frequency data for methods is gathered by analyzing other projects from the same ecosystem and this data is used then to improve tools. We present a preliminary study on the potential of this approach to improve the API presentation by reducing the time it takes to find the method that implements a given feature. We also briefly present our experience with two proof-of-concept tools implemented for Smalltalk and Java.