992 resultados para Soil permeability.
Resumo:
Irrigation is known to stimulate soil microbial carbon and nitrogen turnover and potentially the emissions of nitrous oxide (N2O) and carbon dioxide (CO2). We conducted a study to evaluate the effect of three different irrigation intensities on soil N2O and CO2 fluxes and to determine if irrigation management can be used to mitigate N2O emissions from irrigated cotton on black vertisols in South-Eastern Queensland, Australia. Fluxes were measured over the entire 2009/2010 cotton growing season with a fully automated chamber system that measured emissions on a sub-daily basis. Irrigation intensity had a significant effect on CO2 emission. More frequent irrigation stimulated soil respiration and seasonal CO2 fluxes ranged from 2.7 to 4.1 Mg-C ha−1 for the treatments with the lowest and highest irrigation frequency, respectively. N2O emission happened episodic with highest emissions when heavy rainfall or irrigation coincided with elevated soil mineral N levels and seasonal emissions ranged from 0.80 to 1.07 kg N2O-N ha−1 for the different treatments. Emission factors (EF = proportion of N fertilizer emitted as N2O) over the cotton cropping season, uncorrected for background emissions, ranged from 0.40 to 0.53 % of total N applied for the different treatments. There was no significant effect of the different irrigation treatments on soil N2O fluxes because highest emission happened in all treatments following heavy rainfall caused by a series of summer thunderstorms which overrode the effect of the irrigation treatment. However, higher irrigation intensity increased the cotton yield and therefore reduced the N2O intensity (N2O emission per lint yield) of this cropping system. Our data suggest that there is only limited scope to reduce absolute N2O emissions by different irrigation intensities in irrigated cotton systems with summer dominated rainfall. However, the significant impact of the irrigation treatments on the N2O intensity clearly shows that irrigation can easily be used to optimize the N2O intensity of such a system.
Resumo:
Nitrogen balance is increasingly used as an indicator of the environmental performance of agricultural sector in national, international, and global contexts. There are three main methods of accounting the national nitrogen balance: farm gate, soil surface, and soil system. OECD (2008) recently reported the nitrogen and phosphorus balances for member countries for the 1985 - 2004 period using the soil surface method. The farm gate and soil system methods were also used in some international projects. Some studies have provided the comparison among these methods and the conclusion is mixed. The motivation of this present paper was to combine these three methods to provide a more detailed auditing of the nitrogen balance and flows for national agricultural production. In addition, the present paper also provided a new strategy of using reliable international and national data sources to calculate nitrogen balance using the farm gate method. The empirical study focused on the nitrogen balance of OECD countries for the period from 1985 to 2003. The N surplus sent to the total environment of OECD surged dramatically in early 1980s, gradually decreased during 1990s but exhibited an increasing trends in early 2000s. The overall N efficiency however fluctuated without a clear increasing trend. The eco-environmental ranking shows that Australia and Ireland were the worst while Korea and Greece were the best.
Resumo:
Environmental Burkholderia pseudomallei isolated from sandy soil at Castle Hill, Townsville, in the dry tropic region of Queensland, Australia, was inoculated into sterile-soil laboratory microcosms subjected to variable soil moisture. Survival and sublethal injury of the B. pseudomallei strain were monitored by recovery using culture-based methods. Soil extraction buffer yielded higher recoveries as an extraction agent than sterile distilled water. B. pseudomallei was not recoverable when inoculated into desiccated soil but remained recoverable from moist soil subjected to 91 days desiccation and showed a growth response to increased soil moisture over at least 113 days. Results indicate that endemic dry tropic soil may act as a reservoir during the dry season, with an increase in cell number and potential for mobilization from soil into water in the wet season.
Resumo:
Under seismic loads neither the response of the pile nor the response of ground are independent of each other, contrary what is normally assumed. In seismic design of buildings, dynamic response of a structure is determined by assuming a fixed base on sub-grade and neglecting the physical interaction between foundation and soil profile in which it is embedded. However, the seismic response of pile foundations in vibration sensitive soil profiles is significantly affected by the behaviour of supporting soil. This research uses validated Finite Element techniques to simulate the seismic behaviour of pile foundations embedded in multilayered vibration sensitive soils.
Resumo:
We have performed electron-microscopic analysis on 0.5-1.0µm grains in order to study radiation damage by the solar-wind. We are reporting some interesting results we have found in monomineralic grains from core sample 15010,1130. This is a submature soil which has been studied for rare gas abundance and ferromagnetic resonance by (1) and modal petrology by (2).
Resumo:
This study uses borehole geophysical log data of sonic velocity and electrical resistivity to estimate permeability in sandstones in the northern Galilee Basin, Queensland. The prior estimates of permeability are calculated according to the deterministic log–log linear empirical correlations between electrical resistivity and measured permeability. Both negative and positive relationships are influenced by the clay content. The prior estimates of permeability are updated in a Bayesian framework for three boreholes using both the cokriging (CK) method and a normal linear regression (NLR) approach to infer the likelihood function. The results show that the mean permeability estimated from the CK-based Bayesian method is in better agreement with the measured permeability when a fairly apparent linear relationship exists between the logarithm of permeability and sonic velocity. In contrast, the NLR-based Bayesian approach gives better estimates of permeability for boreholes where no linear relationship exists between logarithm permeability and sonic velocity.
Resumo:
This paper reports on the outcomes of an ICT enabled social sustainability project “Green Lanka1” trialled in the Wilgamuwa village, which is situated in the Dambulla district of Sri Lanka. The main goals of the project were focused towards the provision of information about market prices, transportation options, agricultural decision support and modern agriculture practices of the farmer communities to improve their livelihood with the effective use of technologies. The project used Web and Mobile (SMS) enabled systems. The Green Lanka project was sponsored by the Information Communication Technology Agency (ICTA) of Sri Lanka under the Institutional Capacity Building Programme (ICBP) grant scheme which was sponsored by the World Bank. Six hundred families in Wilgamuwa village participated in the project activities. The project was designed, executed and studied through an Action Research approach. The lessons learned through the project activities provide an important understanding of the complex interaction between different stakeholders in the process of implementation of ICT enabled solutions within digitally divided societies. The paper analyses the processes used to reduce the resistance to change and improved involvement of farmer communities in ICT enabled projects. It also analyses the interaction between stakeholders involved in design and implementation of the project activities to improve the chances of project success.
Resumo:
This project sought to investigate parameters of residual soil materials located in South East Queensland (SEQ), as determined from a large number of historical site investigation records. This was undertaken to quantify material parameter variability and to assess the validity of using commonly adopted correlations to estimate "typical" soil parameters for this region. A dataset of in situ and laboratory derived residual soil parameters was constructed and analysed to identify potential correlations that related either to the entire area considered, or to specific residual soils that were derived from a common parent material. The variability of SEQ soil parameters were generally found to be greater than the results of equivalent studies that analysed transported soil dominant datasets. Noteworthy differences in material properties also became evident when residual soils weathered from different parent materials were considered independently. Large variation between the correlations developed for specific soil types was found, which highligted both heterogeneity of the studied materials and the incompatibility of generic correlations to residual soils present in SEQ. Region and parent material specific correlations that estimate shear strength from in situ penetration tests have been proposed for the various residual soil types considered.
Resumo:
This paper treats the blast response of a pile foundation in saturated sand using explicit nonlinear finite element analysis, considering complex material behavior of soil and soil–pile interaction. Blast wave propagation in the soil is studied and the horizontal deformation of pile and effective stresses in the pile are presented. Results indicate that the upper part of the pile to be vulnerable and the pile response decays with distance from the explosive. The findings of this research provide valuable information on the effects of underground explosions on pile foundation and will guide future development, validation and application of computer models.
Resumo:
X-ray microtomography (micro-CT) with micron resolution enables new ways of characterizing microstructures and opens pathways for forward calculations of multiscale rock properties. A quantitative characterization of the microstructure is the first step in this challenge. We developed a new approach to extract scale-dependent characteristics of porosity, percolation, and anisotropic permeability from 3-D microstructural models of rocks. The Hoshen-Kopelman algorithm of percolation theory is employed for a standard percolation analysis. The anisotropy of permeability is calculated by means of the star volume distribution approach. The local porosity distribution and local percolation probability are obtained by using the local porosity theory. Additionally, the local anisotropy distribution is defined and analyzed through two empirical probability density functions, the isotropy index and the elongation index. For such a high-resolution data set, the typical data sizes of the CT images are on the order of gigabytes to tens of gigabytes; thus an extremely large number of calculations are required. To resolve this large memory problem parallelization in OpenMP was used to optimally harness the shared memory infrastructure on cache coherent Non-Uniform Memory Access architecture machines such as the iVEC SGI Altix 3700Bx2 Supercomputer. We see adequate visualization of the results as an important element in this first pioneering study.
Resumo:
Introduction: There is a recognised relationship between dry weather conditions and increased risk of anterior cruciate ligament (ACL) injury. Previous studies have identified 28 day evaporation as an important weather-based predictor of non-contact ACL injuries in professional Australian Football League matches. The mechanism of non-contact injury to the ACL is believed to increased traction and impact forces between footwear and playing surface. Ground hardness and the amount and quality of grass are factors that would most likely influence this and are inturn, related to the soil moisture content and prevailing weather conditions. This paper explores the relationship between soil moisture content, preceding weather conditions and the Clegg Soil Impact Test (CSIT) which is an internationally recognised standard measure of ground hardness for sports fields. Methodology: The 2.25 kg Clegg Soil Impact Test and a pair of 12 cm soil moisture probes were used to measure ground hardness and percentage moisture content. Five football fields were surveyed at 13 prescribed sites just before seven football matches from October 2008 to January 2009 (an FC Women’s WLeague team). Weather conditions recorded at the nearest weather station were obtained from the Bureau of Meteorology website and total rainfall less evaporation was calculated for 7 and 28 days prior to each match. All non-contact injuries occurring during match play and their location on the field were recorded. Results/conclusions: Ground hardness varied between CSIT 5 and 17 (x10G) (8 is considered a good value for sports fields). Variations within fields were typically greatest in the centre and goal areas. Soil moisture ranged from 3 to 40% with some fields requiring twice the moisture content of others to maintain similar CSIT values. There was a non-linear, negative relationship for ground hardness versus moisture content and a linear relationship with weather (R2, of 0.30 and 0.34, respectively). Three non-contact ACL injuries occurred during the season. Two of these were associated with hard and variable ground conditions.
Resumo:
This paper presents an experimental study to evaluate effect of cumulative lightweight aggregate (LWA) content (including lightweight sand) in concrete [water/cement ratio (w/c) = 0.38] on its water absorption, water permeability, and resistance to chloride-ion penetration. Rapid chloride penetrability test (ASTM C 1202), rapid migration test (NT Build 492), and salt ponding test (AASHTO T 259) were conducted to evaluate the concrete resistance to chloride-ion penetration. The results were compared with those of a cement paste and a control normal weight aggregate concrete (NWAC) with the same w/c and a NWAC (w/c = 0.54) with 28-day compressive strength similar to some of the lightweight aggregate concrete (LWAC). Results indicate that although the total charge passed, migration coefficient, and diffusion coefficient of the LWAC were not significantly different from those of NWAC with the same w/c of 0.38, resistance of the LWAC to chloride penetration decreased with increase in the cumulative LWA content in the concretes. The water penetration depth under pressure and water sorptivity showed, in general, similar trends. The LWAC with only coarse LWA had similar water sorptivity, water permeability coefficient, and resistance to chloride-ion penetration compared to NWAC with similar w/c. The LWAC had lower water sorptivity, water permeability and higher resistance to chloride-ion penetration than the NWAC with similar 28-day strength but higher w/c. Both the NWAC and LWAC had lower sorptivity and higher resistance to chloride-ion penetration than the cement paste with similar w/c.
Resumo:
This paper presents an experimental study on the effect of presoaked lightweight aggregates (LWAs) for internal curing on water permeability, water absorption and resistance of concrete to chloride-ion penetration in comparison with those of a control concrete and a concrete with shrinkage reducing admixture (SRA) of similar water/cement ratios (w/c). In general, the concretes with LWA particles had initial water absorption, sorptivity and water permeability similar to or lower than those of the control concrete and the concrete with SRA. The charges passed, chloride migration coefficient and chloride diffusion coefficient of such concretes were in the same order as those of the control concrete and the concrete with SRA. However, the incorporation of the LWAs for internal curing reduced unit weight, compressive strength and elastic modulus of the concrete. Comparing the LWAs of different sizes for internal curing, finer particles were more efficient in reducing the shrinkage and generally resulted in less reduction in the unit weight, compressive strength, and elastic modulus. However, the increase in the more porous crushed LW particles in concrete seems to increase the penetration of chloride ions in the concrete. The concrete with SRA had initial water absorption, sorptivity, water permeability and resistance to chloride ion penetration comparable with those of the control concrete. The use of SRA in concrete does not affect the elastic modulus of the concrete, except for a minor influence on the compressive strength of the concrete.
Resumo:
Nitrous oxide is a major greenhouse gas emission. The aim of this research was to develop and apply statistical models to characterize the complex spatial and temporal variation in nitrous oxide emissions from soils under different land use conditions. This is critical when developing site-specific management plans to reduce nitrous oxide emissions. These studies can improve predictions and increase our understanding of environmental factors that influence nitrous oxide emissions. They also help to identify areas for future research, which can further improve the prediction of nitrous oxide in practice.
Resumo:
Successive alkalinity producing systems (SAPSs) are widely used for treating acid mine drainage (AMD) and alleviating clogging commonly occurring in limestone systems due to an amorphous ferric precipitate. In this study, iron dust, bone char, micrite and their admixtures were used to treat arseniccontaining AMD. A particular interest was devoted to arsenic removal performance, mineralogical constraints on arsenic retention ability and permeability variation during column experiment for 140 days. The results showed that the sequence of the arsenic removal capacity was as follows: bone char > micrite > iron dust. The combination of 20% v/v iron dust and 80% v/v bone char/micrite columns can achieve better hydraulic conductivity and phosphorus-retention capacity than single micrite and bone char columns. The addition of iron dust created reductive environment and resulted in the transformation of coating material from colloidal phase to secondary mineral phase, such as green rust and phosphoerrite, which obviously ameliorates hydraulic conductivity of systems. The sequential extraction experiments indicated that the stable fractions of arsenic in columns were enhanced with help of iron dust compared to single bone char and micrite columns. A combination of iron dust and micrite/bone char represented a potential SAPS for treating As-containing AMD.