968 resultados para Soil Carbon Models
Resumo:
Improved understanding and prediction of the fundamental environmental controls on ecosystem service supply across the landscape will help to inform decisions made by policy makers and land-water managers. To evaluate this issue for a local catchment case study, we explored metrics and spatial patterns of service supply for water quality regulation, agriculture production, carbon storage, and biodiversity for the Macronutrient Conwy catchment. Methods included using ecosystem models such as LUCI and JULES, integration of national scale field survey datasets, earth observation products and plant trait databases, to produce finely resolved maps of species richness and primary production. Analyses were done with both 1x1 km gridded and subcatchment data. A common single gradient characterised catchment scale ecosystem services supply with agricultural production and carbon storage at opposing ends of the gradient as reported for a national-scale assessment. Species diversity was positively related to production due to the below national average productivity levels in the Conwy combined with the unimodal relationship between biodiversity and productivity at the national scale. In contrast to the national scale assessment, a strong reduction in water quality as production increased was observed in these low productive systems. Various soil variables were tested for their predictive power of ecosystem service supply. Soil carbon, nitrogen, their ratio and soil pH all had double the power of rainfall and altitude, each explaining around 45% of variation but soil pH is proposed as a potential metric for ecosystem service supply potential as it is a simple and practical metric which can be carried out in the field with crowd-sourcing technologies now available. The study emphasises the importance of considering multiple ecosystem services together due to the complexity of covariation at local and national scales, and the benefits of exploiting a wide range of metrics for each service to enhance data robustness.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
A quantificação do impacto das práticas de preparo sobre as perdas de carbono do solo é dependente da habilidade de se descrever a variabilidade temporal da emissão de CO2 do solo após preparo. Tem sido sugerido que as grandes quantidades de CO2 emitido após o preparo do solo podem servir como um indicador das modificações nos estoques de carbono do solo em longo termo. Neste trabalho é apresentado um modelo de duas partes baseado na temperatura e na umidade do solo e que inclui um termo exponencial decrescente do tempo que é eficiente no ajuste das emissões intermediárias após preparo: arado de disco seguido de uma passagem com a grade niveladora (convencional) e escarificador de arrasto seguido da passagem com rolo destorroador (reduzido). As emissões após o preparo do solo são descritas utilizando-se estimativa não linear com um coeficiente de determinação (R²) tão alto quanto 0.98 após preparo reduzido. Os resultados indicam que nas previsões da emissão de CO2 após o preparo do solo é importante considerar um termo exponencial decrescente no tempo após preparo.
Resumo:
Soil tillage may influence CO2 emissions in agricultural systems. Agricultural soils are managed in several ways in Brazil, ranging from no tillage to intensive land preparation. The objective of this study was to determine the effect of common soil tillage treatments (disk harrow, reversible disk plow, rotary tiller and chisel plow tillage systems) on the intermediate CO2 emissions of a dark red latosol, located in southern Brazil. Different tillage systems produced significant differences in the CO2 emissions, and the results indicate that the chisel plow produced the highest soil carbon loss during the 15 days period after tillage treatments were performed. Emissions to the atmosphere increased as much as 74 g CO2 m(-2), at the end of a 2-week period, in the plot where the chisel plow treatment was applied, in comparison to the non-disturbed plot. The results indicate that the total increase on the intermediate term soil CO2 emissions due to tillage treatments in southern Brazil is comparable to that reported for the more humid and cooler regions. (C) 2001 Elsevier B.V. B.V All rights reserved.
Resumo:
Stopping the increase of atmospheric CO2 level is an important task and information on how to implement adjustments on tillage practices could help lower Soil CO2 emissions would be helpful. We describe how rotary tiller use on a red latosol affected Soil CO2 efflux. The impact of changing blade rotation speed and rear shield position on soil CO2 efflux was investigated. Significant differences among treatments were observed up to 10 days after tillage. Cumulative CO2 efflux was as much as 40% greater when blade rotation of 216 rpm and a lowered rear shield was compared to blade rotation of 122 rpm and raised shield. This preliminary work suggests that adjusting rotary tiller settings could help reduce CO2 efflux close to that of undisturbed soil, thereby helping to conserve soil carbon in tropical environments. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
The impact of tillage systems on soil CO2 emission is a complex issue as different soil types are managed in various ways, from no-till to intensive land preparation. In southern Brazil, the adoption of a new management option has arisen most recently, with no-tillage as well as no burning of crops residues left on soil surface after harvesting, especially in sugar cane areas. Although such practice has helped to restore soil carbon, the tillage impact on soil carbon loss in such areas has not been widely investigated. This study evaluated the effect of moldboard plowing followed by offset disk harrow and chisel plowing on clay oxisolCO(2) emission in a sugar cane field treated with no-tillage and high crop residues input in the last 6 years. Emissions after tillage were compared to undisturbed soil CO2 emissions during a 4-week period by using an LI-6400 system coupled to a portable soil chamber. Conventional tillage caused the highest emission during almost the whole period studied, except for the efflux immediately following tillage, when the reduced plot produced the highest peak. The lowest emissions were recorded 7 days after tillage, at the end of a dry period, when soil moisture reached its lowest rate. A linear regression between Soil CO2 effluxes and soil moisture in the no-till and conventional plots corroborate the fact that moisture, and not soil temperature, was a controlling factor. Total soil CO2 loss was huge and indicates that the adoption of reduced tillage would considerably decrease soil carbon dioxide emission in our region, particularly during the summer season and when growers leave large amounts of crop residues on the soil surface. Although it is known that crop residues are important for restoring soil carbon, our result indicates that an amount equivalent to approximately 30% of annual crop carbon residues could be transferred to the atmosphere, in a period of 4 weeks only, when conventional tillage is applied on no-tilled soils. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Few studies have examined the effects of temperature on spatial and temporal trends in soil CO2-C emissions in Antarctica. In this work, we present in situ measurements of CO2-C emissions and assess their relation with soil temperature, using dynamic chambers. We found an exponential relation between CO2 emissions and soil temperature, with the value of Q10 being close to 2.1. Mean emission rates were as low as 0.026 and 0.072 g of CO2-C m-2 h-1 for bare soil and soil covered with moss, respectively, and as high as 0.162 g of CO2-C m-2 h-1 for soil covered with grass, Deschampsia antarctica Desv. (Poaceae). A spatial variability analysis conducted using a 60-point grid, for an area with mosses (Sannionia uncianata) and D. antarctica, yielded a spherical semivariogram model for CO2-C emissions with a range of 1 m. The results suggest that soil temperature is a controlling factor on temporal variations in soil CO2-C emissions, although spatial variations appear to be more strongly related to the distribution of vegetation types. © 2010 Elsevier B.V. and NIPR.
Resumo:
Brazil's Atlantic Forest ecosystem has been greatly affected by land use changes, with only 11.26% of its original vegetation cover remaining. Currently, Atlantic Forest restoration is receiving increasing attention because of its potential for carbon sequestration and the important role of soil carbon in the global carbon balance. Soil organic matter is also essential for physical, chemical and biological components of soil fertility and forest sustainability. This study evaluated the potential for soil recovery in contrasting restoration models using indigenous Atlantic Forest tree species ten years after their establishment. The study site is located in Botucatu municipality, São Paulo State-Brazil, in a loamy dystrophic Red-Yellow Argisol site (Typic Hapludult). Four treatments were compared: i) Control (Spontaneous Restoration); ii) Low Diversity (five fast-growing tree species established by direct seeding); iii) High Diversity (mixed plantings of 41 species established with seedlings) and; iv) Native Forest (well conserved neighboring forest fragment). The following soil properties were evaluated: (1) physical-texture, density and porosity; (2) chemical-C, N, P, S, K, Ca, Mg, Al and pH; (3) biological-microbial biomass. Litter nutrient concentrations (P, S, K, Ca and Mg) and C and N litter stocks were determined. Within ten years the litter C and N stocks of the Low Diversity treatment area were higher than Control and similar to those in both the High Diversity treatment and the Native Forest. Soil C stocks increased through time for both models and in the Control plots, but remained highest in the Native Forest. The methods of restoration were shown to have different effects on soil dynamics, mainly on chemical properties. These results show that, at least in the short-term, changes in soil properties are more rapid in a less complex system like the Low Diversity model than in the a High Species Diversity model. For both mixed plantation systems, carbon soil cycling can be reestablished, resulting in increases in carbon stocks in both soil and litter.
Resumo:
Polar Regions are the most important soil carbon reservoirs on Earth. Monitoring soil carbon storage in a changing global climate context may indicate possible effects of climate change on terrestrial environments. In this regard, we need to understand the dynamics of soil organic matter in relation to its chemical characteristics. We evaluated the influence of chemical characteristics of humic substances on the process of soil organic matter mineralization in selected Maritime Antarctic soils. A laboratory assay was carried out with soils from five locations from King George Island. We determined the contents of total organic carbon, oxidizable carbon fractions of soil organic matter, and humic substances. Two in situ field experiments were carried out during two summers, in order to evaluate the CO2-C emissions in relation to soil temperature variations. The overall low amounts of soil organic matter in Maritime Antarctic soils have a low humification degree and reduced microbial activity. CO2-C emissions showed significant exponential relationship with temperature, suggesting a sharp increase in CO2-C emissions with a warming scenario, and Q10 values (the percentage increase in emission for a 10°C increase in soil temperature) were higher than values reported from elsewhere. The sensitivity of the CO2-C emission in relation to temperature was significantly correlated with the humification degree of soil organic matter and microbial activity for Antarctic soils. © 2012 Antarctic Science Ltd.
Resumo:
Human activities have been driven land cover, provoking acceleration of the erosive process and alteration on the soil characteristics. To explore the effects of human disturbance, we investigated the influences of natural and anthropogenic features on soil quality and soil erosion indicators (EI) within a Brazilian rural watershed located in Bauru Municipality, State of So Paulo. A pre-established set of soil EI was used to evaluate the influence of anthropogenic land cover categories on the presence and severity of erosion, related with spatial variations of soil attributes. On-site visits were carried out to measure the occurrence and the intensity of eleven separate EI values and to collect undisturbed topsoil samples for subsequent analyses. We registered 17 occurrences of EIs, distributed in ten locals. Occurrence and intensity of EIs were related to degree of sheet erosion. The EI qualities were more strongly associated with land cover management practices than to local topographic features. The occurrence of EIs and characteristics of soil and soil organic matter (SOM) were not significantly self-correlated. Although land cover class seems to influence soil properties and SOM attributes, we observed that the granulometric composition of the soils also contributes to the structural characteristics of the soil and consequently to the dynamic loss and gain of soil carbon. Sites covered with natural remnant vegetation (NRV) store 96.5 Mg ha(-1) of C and grassy and tilled soils stored more C than NRV, 100.1 and 142.4 Mg ha(-1), respectively. Due to the influence of soil texture over the soil C dynamic, we observe that in Bauru, pastured areas have high potential for sequestration of C if factors such as fire and/or erosion were avoided or effectively controlled. Results from this study show that human disturbance substantially affects soil properties within of southeastern region of Brazil.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Soil erosion models and soil erosion risk maps are often used as indicators to assess potential soil erosion in order to assist policy decisions. This paper shows the scientific basis of the soil erosion risk map of Switzerland and its application in policy and practice. Linking a USLE/RUSLE-based model approach (AVErosion) founded on multiple flow algorithms and the unit contributing area concept with an extremely precise and high-resolution digital terrain model (2 m × 2 m grid) using GIS allows for a realistic assessment of the potential soil erosion risk, on single plots, i.e. uniform and comprehensive for the agricultural area of Switzerland (862,579 ha in the valley area and the lower mountain regions). The national or small-scale soil erosion prognosis has thus reached a level heretofore possible only in smaller catchment areas or single plots. Validation was carried out using soil loss data from soil erosion damage mappings in the field from long-term monitoring in different test areas. 45% of the evaluated agricultural area of Switzerland was classified as low potential erosion risk, 12% as moderate potential erosion risk, and 43% as high potential erosion risk. However, many of the areas classified as high potential erosion risk are located at the transition from valley to mountain zone, where many areas are used as permanent grassland, which drastically lowers their current erosion risk. The present soil erosion risk map serves on the one hand to identify and prioritise the high-erosion risk areas, and on the other hand to promote awareness amongst farmers and authorities. It was published on the internet and will be made available to the authorities in digital form. It is intended as a tool for simplifying and standardising enforcement of the legal framework for soil erosion prevention in Switzerland. The work therefore provides a successful example of cooperation between science, policy and practice.
Resumo:
Northern wetlands, and particularly peatlands, have been shown to store around 30% of the world's soil carbon and thus play a significant role in the carbon cycle of our planet. Changes in climate are altering peatland hydrology and vegetation communities. These changes are possibly resulting in declines in the ability of peatlands to sequester carbon because losses through carbon oxidation and mineralization are likely to increase relative to C inputs from net primary production in a warmer, drier climate. However, the consequences of interactive effects of altered hydrology and vegetation on carbon storage are not well understood. This research evaluated the importance of plant species, water table, and their interactive effects on porewater quality in a northern peatland with an average pH of 4.54, ranging from 4.15 to 4.8. We assessed the effects of plant functional group (ericaceous shrubs, sedges, and bryophytes) and water table position on biogeochemical processes. Specifically, we measured dissolved organic carbon (DOC), total dissolved nitrogen (TDN), potential enzyme activity, organic acids, anions and cations, spectral indexes of aromaticity, and phenolic content. Our results indicate that acetate and propionate concentrations in the sedge-dominated communities declined with depth and water table drawdown, relative to the control and ericaceous treatments. DOC increased in the lowered water table treatments in all vegetation community types, and the peat porewater C:N ratio declined in the sedge-dominated treatments when the water table was lowered. The relationship between DOC and ferrous iron showed significant responses to vegetation type; the exclusion of Ericaceae resulted in less ferrous iron per unit DOC compared to mixed species treatments and Ericaceae alone. This observation was corroborated with higher mean oxidation redox potential profiles (integrating 20, 40, and 70 cm) measured in the sedge treatments, compared with the mixed and Ericaceae species treatments over a growing season. Enzymatic activities did not show as strong of a response to treatments as expected; the oxidative enzyme peroxidase and the hydrolytic enzyme phosphatase were the only enzymes to respond to water table, where the potential activity of both enzymes increased with water table drawdown. Overall, there were significant interactive effects between changes in vegetation and water table position on peat porewater composition. These data suggest that vegetation effects on oxidation reduction potentials and peat porewater character can be as important as water table position in northern bog ecosystems.