995 resultados para Snow Covered Surfaces.
Resumo:
Road surface macrotexture is identified as one of the factors contributing to the surface's skid resistance. Existing methods of quantifying the surface macrotexture, such as the sand patch test and the laser profilometer test, are either expensive or intrusive, requiring traffic control. High-resolution cameras have made it possible to acquire good quality images from roads for the automated analysis of texture depth. In this paper, a granulometric method based on image processing is proposed to estimate road surface texture coarseness distribution from their edge profiles. More than 1300 images were acquired from two different sites, extending to a total of 2.96 km. The images were acquired using camera orientations of 60 and 90 degrees. The road surface is modeled as a texture of particles, and the size distribution of these particles is obtained from chord lengths across edge boundaries. The mean size from each distribution is compared with the sensor measured texture depth obtained using a laser profilometer. By tuning the edge detector parameters, a coefficient of determination of up to R2 = 0.94 between the proposed method and the laser profilometer method was obtained. The high correlation is also confirmed by robust calibration parameters that enable the method to be used for unseen data after the method has been calibrated over road surface data with similar surface characteristics and under similar imaging conditions.
Resumo:
The inclusion of carbon nanotubes in polymer matrix has been proposed to enhance the polymer’s physical and electrical properties. In this study, microscopic and spectroscopic techniques are used to investigate the interaction between poly(3-hexylthiophene) (P3HT) and nanotubes and the reciprocal modification of physical properties. The presence of P3HT-covered nanotubes dispersed in the polymer matrix has been observed by atomic force microscopy and transmission electron microscopy. Then, the modification of P3HT optical properties due to nanotube inclusion has been evidenced with spectroscopic techniques like absorption and Raman spectroscopy. The study is completed with detailed nanoscale analysis by scanning probe techniques. The ordered self assembly of polymer adhering on the nanotube is unveiled by showing an example of helical wrapping of P3HT. Scanning tunneling spectroscopy study provides information on the electronic structure of nanotube-polymer assembly, revealing the charge transfer from P3HT to the nanotube.
Resumo:
Vertically aligned ZnO nanorods have been grown on silicon substrates pre-coated with thin, less than 10 nm, textured ZnO seeding layers via a vapor-solid mechanism. The ZnO seeding layers, which were essential for vertical alignment of ZnO nanorods without using any metal catalyst, were prepared by decomposing zinc acetate. The structure and the luminescence properties of the ZnO nanorods synthesized onto ZnO seeding layers were investigated and their morphologies were compared with those of single-crystalline GaN substrates and silicon substrates covered with sputtered ZnO flms. Patterning of ZnO seed layers using photolithography allowed the fabrication of patterned ZnO-nanorod arrays.
Resumo:
Background: Real-world environments comprise surfaces of different textures, densities and gradients, which can threaten postural stability and increase falls risk. However, there has been limited research that has examined how walking on compliant surfaces influences gait and postural stability in older people and PD patients. Methods: PD patients (n = 49) and age-matched controls (n = 32) were assessed using three dimensional motion analysis during self-paced walking on both firm and foam walkways. Falls were recorded prospectively over 12 months using daily falls calendars. Results: Walking on a foam surface influenced the temporospatial characteristics for all groups, but PD fallers adopted very different joint kinematics compared with controls. PD fallers also demonstrated reduced toe clearance and had increased mediolateral head motion(relative to walking velocity) compared with control participants. Conclusions: Postural control deficits in PD fallers may impair their capacity to attenuate surface-related perturbations and control head motion. The risk of falling for PD patients may be increased on less stable surfaces.
Impact of the Charge Density of Phospholipid Bilayers on Lubrication of Articular Cartilage Surfaces
Resumo:
While the 2007 Australian federal election was notable for the use of social media by the Australian Labor Party in campaigning, the 2010 election took place in a media landscape in which social media–especially Twitter–had become much more embedded in both political journalism and independent political commentary. This article draws on the computer-aided analysis of election-related Twitter messages, collected under the #ausvotes hashtag, to describe the key patterns of activity and thematic foci of the election’s coverage in this particular social media site. It introduces novel metrics for analysing public communication via Twitter, and describes the related methods. What emerges from this analysis is the role of the #ausvotes hashtag as a means of gathering an ad hoc ‘issue public’– a finding which is likely to be replicated for other hashtag communities.
Resumo:
Semiconductor epitaxial nanostructures have been recently proposed as the key building blocks of many innovative applications in materials science and technology. To bring their tremendous potential to fruition, a fine control of nanostructure size and placement is necessary. We present a detailed investigation of the self-ordering process in the prototype case of Ge/Si heteroepitaxy. Starting from a bottom-up strategy (step-bunching instabilities), our analysis moves to lithographic techniques (scanning tunneling lithography, nanomechanical stamping, focused ion beam patterning) with the aim of developing a hybrid approach in which the exogenous intervention is specifically designed to suit and harness the natural self-organization dynamics of the system.
Resumo:
The surface amorphous layer of articular cartilage is of primary importance to its load-bearing and lubrication function. This lipid-filled layer is degraded/disrupted or eliminated when cartilage degenerates due to diseases. This article examines further the characteristic of this surface overlay using a combination of microscopy and imaging methods to evaluate the hypothesis that the surface of articular cartilage can be repaired by exposing degraded cartilage to aqueous synthetic lipid mixtures. The preliminary results demonstrate that it is possible to create a new surface layer of phospholipids on the surface of cartilage following artificial lipid removal, but such a layer does not possess enough mechanical strength for physiological function when created with either unsaturated palmitoyloleoyl- phosphatidylcholine or saturated dipalmitoyl-phosphatidylcholine component of joint lipid composition alone. We conclude that this may be due to low structural cohesivity, inadequate time of exposure, and the mix/content of lipid in the incubation environment.
Resumo:
Solids are widely identified as a carrier of harmful pollutants in stormwater runoff exerting a significant risk to receiving waters. This paper outlines the findings of an in-depth investigation on heavy metal adsorption to solids surfaces. Pollutant build-up samples collected from sixteen road sites in residential, industrial and commercial land uses were separated into four particle size ranges and analysed for a range of physico-chemical parameters and nine heavy metals including Iron (Fe), Aluminum (Al), Lead (Pb), Zinc (Zn), Cadmium (Cd), Chromium (Cr), Manganese (Mn), Nickel (Ni) and Copper (Cu). High specific surface area (SSA) and total organic carbon (TOC) content in finer particle size ranges was noted, thus confirming strong correlations with heavy metals. Based on their physico-chemical characteristics, two different types of solids originating from traffic and soil sources were identified. Solids generated by traffic were associated with high loads of heavy metals such as Cd and Cr with strong correlation with SSA. This suggested the existence of surface dependent bonds such as cation exchange between heavy metals and solids. In contrast, Fe, Al and Mn which can be attributed to soil inputs showed strong correlation with TOC suggesting strong bonds such as chemsorption. Zn was found to be primarily attached to solids by bonding with the oxides of Fe, Al and Mn. The data analysis also confirmed the predominance of the finer fraction, with 70% of the solids being finer than 150 µm and containing 60% of the heavy metal pollutant load.
Resumo:
Topographically and chemically modified titanium implants are recognized to have improved osteogenic properties; however, the molecular regulation of this process remains unknown. This study aimed to determine the microRNA profile and the potential regulation of osteogenic differentiation following early exposure of osteoprogenitor cells to sand-blasted, large-grit acid-etched (SLA) and hydrophilic SLA (modSLA) surfaces. Firstly, the osteogenic characteristics of the primary osteoprogenitor cells were confirmed using ALP activity and Alizarin Red S staining. The effect of smooth (SMO), SLA and modSLA surfaces on the TGF-β/BMP (BMP2, BMP6, ACVR1) and non-canonical WNT/Ca2+ (WNT5A, FZD6) pathways, as well as the integrins ITGB1 and ITGA2, was determined. It was revealed that the modified titanium surfaces could induce the activation of TGF-β/BMP and non-canonical WNT/Ca2+ signaling genes. The expression pattern of microRNAs (miRNAs) related to cell differentiation was evaluated. Statistical analysis of the differentially regulated miRNAs indicated that 35 and 32 miRNAs were down-regulated on the modSLA and SLA surfaces respectively, when compared with the smooth surface (SMO). Thirty-one miRNAs that were down-regulated were common to both modSLA and SLA. There were 10 miRNAs up-regulated on modSLA and nine on SLA surfaces, amongst which eight were the same as observed on modSLA. TargetScan predictions for the down-regulated miRNAs revealed genes of the TGF-β/BMP and non-canonical Ca2+ pathways as targets. This study demonstrated that modified titanium implant surfaces induce differential regulation of miRNAs, which potentially regulate the TGF-β/BMP and WNT/Ca2+ pathways during osteogenic differentiation on modified titanium implant surfaces.
Resumo:
The nitrile imine-mediated tetrazole-ene cycloaddition reaction (NITEC) is introduced as a powerful and versatile conjugation tool to covalently ligate macromolecules onto variable (bio)surfaces. The NITEC approach is initiated by UV irradiation and proceeds rapidly at ambient temperature yielding a highly fluorescent linkage. Initially, the formation of block copolymers by the NITEC methodology is studied to evidence its efficacy as a macromolecular conjugation tool. The grafting of polymers onto inorganic (silicon) and bioorganic (cellulose) surfaces is subsequently carried out employing the optimized reaction conditions obtained from the macromolecular ligation experiments and evidenced by surface characterization techniques, including X-ray photoelectron spectroscopy and FT-IR microscopy. In addition, the patterned immobilization of variable polymer chains onto profluorescent cellulose is achieved through a simple masking process during the irradiation. Photoinduced nitrile imine-alkene 1,3-dipolar cycloaddition (NITEC) is employed to covalently bind well-defined polymers onto silicon oxide or cellulose. A diaryl tetrazole-functionalized molecule is grafted via silanization or amidification, respectively. Under UV light, a reactive nitrile imine rapidly forms and reacts with maleimide-functionalized polymers yielding a fluorescent linkage. Via a masking method, polymeric fluorescent patterns are achieved.