975 resultados para Snow Cleaning
Resumo:
Though many global aerosols models prognose surface deposition, only a few models have been used to directly simulate the radiative effect from black carbon (BC) deposition to snow and sea ice. Here, we apply aerosol deposition fields from 25 models contributing to two phases of the Aerosol Comparisons between Observations and Models (AeroCom) project to simulate and evaluate within-snow BC concentrations and radiative effect in the Arctic. We accomplish this by driving the offline land and sea ice components of the Community Earth System Model with different deposition fields and meteorological conditions from 2004 to 2009, during which an extensive field campaign of BC measurements in Arctic snow occurred. We find that models generally underestimate BC concentrations in snow in northern Russia and Norway, while overestimating BC amounts elsewhere in the Arctic. Although simulated BC distributions in snow are poorly correlated with measurements, mean values are reasonable. The multi-model mean (range) bias in BC concentrations, sampled over the same grid cells, snow depths, and months of measurements, are −4.4 (−13.2 to +10.7) ng g−1 for an earlier phase of AeroCom models (phase I), and +4.1 (−13.0 to +21.4) ng g−1 for a more recent phase of AeroCom models (phase II), compared to the observational mean of 19.2 ng g−1. Factors determining model BC concentrations in Arctic snow include Arctic BC emissions, transport of extra-Arctic aerosols, precipitation, deposition efficiency of aerosols within the Arctic, and meltwater removal of particles in snow. Sensitivity studies show that the model–measurement evaluation is only weakly affected by meltwater scavenging efficiency because most measurements were conducted in non-melting snow. The Arctic (60–90° N) atmospheric residence time for BC in phase II models ranges from 3.7 to 23.2 days, implying large inter-model variation in local BC deposition efficiency. Combined with the fact that most Arctic BC deposition originates from extra-Arctic emissions, these results suggest that aerosol removal processes are a leading source of variation in model performance. The multi-model mean (full range) of Arctic radiative effect from BC in snow is 0.15 (0.07–0.25) W m−2 and 0.18 (0.06–0.28) W m−2 in phase I and phase II models, respectively. After correcting for model biases relative to observed BC concentrations in different regions of the Arctic, we obtain a multi-model mean Arctic radiative effect of 0.17 W m−2 for the combined AeroCom ensembles. Finally, there is a high correlation between modeled BC concentrations sampled over the observational sites and the Arctic as a whole, indicating that the field campaign provided a reasonable sample of the Arctic.
Resumo:
Highly heterogeneous mountain snow distributions strongly affect soil moisture patterns; local ecology; and, ultimately, the timing, magnitude, and chemistry of stream runoff. Capturing these vital heterogeneities in a physically based distributed snow model requires appropriately scaled model structures. This work looks at how model scale—particularly the resolutions at which the forcing processes are represented—affects simulated snow distributions and melt. The research area is in the Reynolds Creek Experimental Watershed in southwestern Idaho. In this region, where there is a negative correlation between snow accumulation and melt rates, overall scale degradation pushed simulated melt to earlier in the season. The processes mainly responsible for snow distribution heterogeneity in this region—wind speed, wind-affected snow accumulations, thermal radiation, and solar radiation—were also independently rescaled to test process-specific spatiotemporal sensitivities. It was found that in order to accurately simulate snowmelt in this catchment, the snow cover needed to be resolved to 100 m. Wind and wind-affected precipitation—the primary influence on snow distribution—required similar resolution. Thermal radiation scaled with the vegetation structure (~100 m), while solar radiation was adequately modeled with 100–250-m resolution. Spatiotemporal sensitivities to model scale were found that allowed for further reductions in computational costs through the winter months with limited losses in accuracy. It was also shown that these modeling-based scale breaks could be associated with physiographic and vegetation structures to aid a priori modeling decisions.
Resumo:
Accurate high-resolution records of snow accumulation rates in Antarctica are crucial for estimating ice sheet mass balance and subsequent sea level change. Snowfall rates at Law Dome, East Antarctica, have been linked with regional atmospheric circulation to the mid-latitudes as well as regional Antarctic snowfall. Here, we extend the length of the Law Dome accumulation record from 750 years to 2035 years, using recent annual layer dating that extends to 22 BCE. Accumulation rates were calculated as the ratio of measured to modelled layer thicknesses, multiplied by the long-term mean accumulation rate. The modelled layer thicknesses were based on a power-law vertical strain rate profile fitted to observed annual layer thickness. The periods 380–442, 727–783 and 1970–2009 CE have above-average snow accumulation rates, while 663–704, 933–975 and 1429–1468 CE were below average, and decadal-scale snow accumulation anomalies were found to be relatively common (74 events in the 2035-year record). The calculated snow accumulation rates show good correlation with atmospheric reanalysis estimates, and significant spatial correlation over a wide expanse of East Antarctica, demonstrating that the Law Dome record captures larger-scale variability across a large region of East Antarctica well beyond the immediate vicinity of the Law Dome summit. Spectral analysis reveals periodicities in the snow accumulation record which may be related to El Niño–Southern Oscillation (ENSO) and Interdecadal Pacific Oscillation (IPO) frequencies.
Resumo:
We quantify the effect of the snow-albedo feedback on Swiss spring temperature trends using daily temperature and snow depth measurements from six station pairs for the period 1961–2011. We show that the daily mean 2-m temperature of a spring day without snow cover is on average 0.4 °C warmer than one with snow cover at the same location. This estimate is comparable with estimates from climate modelling studies. Caused by the decreases in snow pack, the snow-albedo feedback amplifies observed temperature trends in spring. The influence is small and confined to areas around the upward-moving snow line in spring and early summer. For the 1961–2011 period, the related temperature trend increases are in the order of 3–7 % of the total observed trend.
Resumo:
A present day control integration performed with the Hadley Centre's coupled climate model HadGEM1.2 experiences a large salinity bias in the Arctic Ocean when compared to in situ observations. Such a large salinity bias may have implications for both Arctic and Atlantic Ocean circulation. Large differences are seen between the runoff in HadGEM and the observations from the Global Runoff Data Centre, in particular in the Lena catchment, which could account for this salinity bias. We suggest that this discrepancy in runoff is, at least in part, due to a lack of snow accumulation in the model. The model climatology is very different to those obtained by remote sensing, such as the Global Snow Water Equivalent Climatology (NSIDC) and GlobSnow (ESA).
Investigating the relationship between Eurasian snow and the Arctic Oscillation with data and models
Resumo:
Recent research suggests Eurasian snow-covered area (SCA) influences the Arctic Oscillation (AO) via the polar vortex. This could be important for Northern Hemisphere winter season forecasting. A fairly strong negative correlation between October SCA and the AO, based on both monthly and daily observational data, has been noted in the literature. While reproducing these previous links when using the same data, we find no further evidence of the link when using an independent satellite data source, or when using a climate model.
Resumo:
Introducing a parameterization of the interactions between wind-driven snow depth changes and melt pond evolution allows us to improve large scale models. In this paper we have implemented an explicit melt pond scheme and, for the first time, a wind dependant snow redistribution model and new snow thermophysics into a coupled ocean–sea ice model. The comparison of long-term mean statistics of melt pond fractions against observations demonstrates realistic melt pond cover on average over Arctic sea ice, but a clear underestimation of the pond coverage on the multi-year ice (MYI) of the western Arctic Ocean. The latter shortcoming originates from the concealing effect of persistent snow on forming ponds, impeding their growth. Analyzing a second simulation with intensified snow drift enables the identification of two distinct modes of sensitivity in the melt pond formation process. First, the larger proportion of wind-transported snow that is lost in leads directly curtails the late spring snow volume on sea ice and facilitates the early development of melt ponds on MYI. In contrast, a combination of higher air temperatures and thinner snow prior to the onset of melting sometimes make the snow cover switch to a regime where it melts entirely and rapidly. In the latter situation, seemingly more frequent on first-year ice (FYI), a smaller snow volume directly relates to a reduced melt pond cover. Notwithstanding, changes in snow and water accumulation on seasonal sea ice is naturally limited, which lessens the impacts of wind-blown snow redistribution on FYI, as compared to those on MYI. At the basin scale, the overall increased melt pond cover results in decreased ice volume via the ice-albedo feedback in summer, which is experienced almost exclusively by MYI.
Resumo:
The Arctic Snow Microstructure Experiment (ASMEx) took place in Sodankylä, Finland in the winters of 2013-2014 and 2014-2015. Radiometric, macro-, and microstructure measurements were made under different experimental conditions of homogenous snow slabs, extracted from the natural seasonal taiga snowpack. Traditional and modern measurement techniques were used for snow macro- and microstructure observations. Radiometric measurements of the microwave emission of snow on reflector and absorber bases were made at frequencies 18.7, 21.0, 36.5, 89.0 and 150.0 GHz, for both horizontal and vertical polarizations. Two measurement configurations were used for radiometric measurements: a reflecting surface and an absorbing base beneath the snow slabs. Simulations of brightness temperatures using two microwave emission models, Helsinki University of Technology (HUT) snow emission model and Microwave Emission Model of Layered Snowpacks (MEMLS), were compared to observed brightness temperatures. RMSE and bias were calculated; with the RMSE and bias values being smallest upon an absorbing base at vertical polarization. Simulations overestimated the brightness temperatures on absorbing base cases at horizontal polarization. With the other experimental conditions, the biases were small; with the exception of the HUT model 36.5 GHz simulation, which produced an underestimation for the reflector base cases. This experiment provides a solid framework for future research on the extinction of microwave radiation inside snow.
Resumo:
Purpose: The aim of this study was to evaluate the effect of three denture hygiene methods against different microbial biofilms formed on acrylic resin specimens. Materials and methods: The set (sterile stainless steel basket and specimens) was contaminated (37 degrees C for 48 hours) by a microbial inoculum with 106 colony-forming units (CFU)/ml (standard strains: Staphylococcus aureus, Streptococcus mutans, Escherichia coli, Candida albicans, Pseudomonas aeruginosa, and Enterococcus faecalis; field strains: S. mutans, C. albicans, C. glabrata, and C. tropicalis). After inoculation, specimens were cleansed by the following methods: (1) chemical: immersion in an alkaline peroxide solution (Bonyplus tablets) for 5 minutes; (2) mechanical: brushing with a dentifrice for removable prostheses (Dentu Creme) for 20 seconds; and (3) a combination of chemical and mechanical methods. Specimens were applied onto a Petri plate with appropriate culture medium for 10 minutes. Afterward, the specimens were removed and the plates incubated at 37 degrees C for 48 hours. Results: Chemical, mechanical, and combination methods showed no significant difference in the reduction of CFU for S. aureus, S. mutans (ATCC and field strain), and P. aeruginosa. Mechanical and combination methods were similar and more effective than the chemical method for E. faecalis, C. albicans (ATCC and field strain), and C. glabrata. The combination method was better than the chemical method for E. coli and C. tropicalis, and the mechanical method showed intermediate results. Conclusion: The three denture hygiene methods showed different effects depending on the type of microbial biofilms formed on acrylic base resin specimens.
Resumo:
Mutualisms often form networks of interacting species, characterized by the existence of a central core of species that potentially drive the ecology and the evolution of the whole community. Centrality measures allow quantification of how central or peripheral a species is within a network, thus informing about the role of each species in network organization, dynamics, and stability. In the present study we addressed the question whether the structural position of species in the network (i.e. their topological importance) relates to their ecological traits. We studied interactions between cleaner and client reef fishes to identify central and peripheral species within a mutualistic network, and investigated five ecological correlates. We used three measures to estimate the level of centrality of a species for distinct structural patterns, such as the number of interactions and the structural proximity to other species. Through the use of a principal component analysis (PCA) we observed that the centrality measures were highly correlated (92.5%) in the studied network, which indicates that the same species plays a similar role for the different structural patterns. Three cleaner and ten client species had positive values of centrality, which suggests that these species are modulating ecological and evolutionary dynamics within the network. Higher centralities were related to higher abundances and feeding habits for client fishes, but not for cleaners. The high correlation between centrality measures in the present study is likely related to the nested structure of the cleaning network. The cleaner species` set, by having central species that are not necessarily the most abundant ones, bears potentially more vulnerable points for network cohesiveness. Additionally, the present study generalizes previous findings for plant-animal mutualisms, as it shows that the structure of marine mutualisms is also related to a complex interplay between abundance and niche-related features.
Resumo:
Cleaner fishes are usually classified as obligate or facultative cleaners according to their diet and the extent to which their nutritional requirements in the different ontogenetic stages are gained from cleaning. While obligate cleaners clean throughout their lives and ingest mainly food taken from the clients` body surface, facultative cleaners clean only as juveniles and have a broader diet. In addition, some facultative cleaners may experience a relatively higher predation risk, and thus rarely interact with piscivorous fishes. Despite these acknowledged differences, there are very few studies that compare cleaning activity of obligate and facultative cleaners within the same area. Cleaning activity of the obligate cleaner goby Elacatinus cf. randalli and the facultative cleaner wrasse Thalassoma noronhanum were comparatively examined at Fernando de Noronha Archipelago, tropical West Atlantic. The client assemblage attended by the two cleaners differed, as the goby attended a slightly greater diversity of species (22), mostly piscivores and zoobenthivores, and the wrasse attended fewer species (19), mostly planktivores. Chromis multilineata was the most common client species of both cleaners, although body size (which is expected to be positively correlated to clients` ectoparasite load) of C. multilineata individuals attended by the goby was larger than that of the individuals attended by the wrasse. Despite such differences, T. noronhanum showed a surprisingly species-rich client assemblage when compared with other cleaners of the genus Thalassoma. In addition, the frequency and time spent on cleaning interactions, as well as the number of client species attended per 10-min period, was similar for both cleaner species, which indicate that they have important yet complimentary ecological roles in the reef community at Fernando de Noronha Archipelago.