951 resultados para Single phase
Resumo:
In this work, we show a set of growth conditions, for the two step process, with which the growth of CZTSe is successful and reproducible. The properties of the best CTZSe thin films grown by this method were examined by SEM/EDS, XRD, Raman scattering, AFM/EFM, transmittance and reflectance measurements, photoluminescence (PL) measurements and hot point probe. A broad emission band was observed in the photoluminescence spectrum of the CZTSe thin film. The band gap energy was estimated to be around 1.05 eV at room temperature, using the transmittance and reflectance data, and CZTSe samples show p-type conductivity with the hot point probe. The different characterization techniques show that we could grow single phase CZTSe thin films with our optimized process conditions.
Resumo:
Cu2ZnSnSe4 (CZTSe) is a p-type semiconductor with a high absorption coefficient, 104 to 105 cm-1, and is being seen as a possible replacement for Cu(In,Ga)Se2 in thin film solar cells. Yet, there are some fundamental properties of CZTSe that are not well known, one of them is its band gap. In order to resolve its correct value it is necessary to improve the growth conditions to ensure that single phase crystalline thin films are obtained. One of the problems encountered when growing CZTSe is the loss of Sn through evaporation of SnSe. Stoichiometric films are then difficult to obtain and usually there are other phases present. One possible way to overcome this problem is to increase the pressure of growth of CZTSe. This can be done by introducing an atmosphere of an inert gas like Ar or N2. In this work we report the results of morphological, structural and optical studies of the properties of CZTSe thin films grown by selenization of DC magnetron sputtered metallic layers under different Ar pressures. The films are analysed by SEM/EDS, Raman scattering and XRD.
Resumo:
Dissertação para obtenção do grau de Mestre em Engenharia Electrotécnica Ramo de Energia
Resumo:
A 10 kJ electromagnetic forming (EMF) modulator with energy recovery based on two resonant power modules, each containing a 4.5 kV/30-kA silicon controlled rectifier, a 1.11-mF capacitor bank and an energy recovery circuit, working in parallel to allow a maximum actuator discharge current amplitude and rate of 50 kA and 2 kA/mu s was successfully developed and tested. It can be plugged in standard single phase 230 V/16 A mains socket and the circuit is able to recover up to 32% of its initial energy, reducing the charging time of conventional EMF systems by up to 68%.
Resumo:
Dissertação para obtenção do Grau de Mestre em Energias Renováveis – Conversão Eléctrica e Utilização Sustentáveis
Resumo:
This paper proposes a single-phase reconfigurable battery charger for Electric Vehicle (EV) that operates in three different modes: Grid-to-Vehicle (G2V) mode, in which the traction batteries are charged from the power grid; Vehicle-to-Grid (V2G) mode, in which the traction batteries deliver part of the stored energy back to the power grid; and in Traction-to-Auxiliary (T2A) mode, in which the auxiliary battery is charged from the traction batteries. When connected to the power grid, the battery charger works with sinusoidal current in the AC side, for both G2V and V2G modes, and also regulates the reactive power. When the EV is disconnected from the power grid, the control algorithms are modified and the full-bridge AC-DC bidirectional converter works as a full-bridge isolated DC-DC converter that is used to charge the auxiliary battery of the EV, avoiding the use of an additional charger to accomplish this task. To assess the behavior of the proposed reconfigurable battery charger under different operation scenarios, a 3.6 kW laboratory prototype has been developed and experimental results are presented.
Resumo:
Dissertação de mestrado integrado em Engenharia Eletrónica Industrial e Computadores
Resumo:
A series of colloidal MxFe3-xO4 (M = Mn, Co, Ni; x = 0–1) nanoparticles with diameters ranging from 6.8 to 11.6 nm was synthesized by hydrothermal reaction in aqueous medium at low temperature (200 °C). Energy-dispersive X-ray microa-nalysis and inductively coupled plasma spectrometry confirms that the actual elemental compositions agree well with the nominal ones. The structural properties of obtained nanoparticles were investigated by using powder X-ray diffraction, Raman scattering, Mössbauer spectroscopy, and electron microscopy. The results demonstrate that our synthesis technique leads to the formation of chemically uniform single-phase solid solution nanoparticles with cubic spinel structure, confirming the intrinsic doping. Magnetic studies showed that, in comparison to Fe3O4, the saturation magnetization of MxFe3-xO4 (M = Mn, Ni) decreases with increasing dopant concentration, while Co-doped samples showed similar saturation magnetizations. On other hand, whereas Mn- and Ni-doped nanoparticles exhibits superparamagnetic behavior at room temperature, ferromagnetism emerges for CoxFe3-xO4 nanoparticles, which can be tuned by the level of Co doping.
Resumo:
When combined at particular molar fractions, sugars, aminoacids or organic acids a present a high melting point depression, becoming liquids at room temperature. These are called Natural Deep Eutectic Solvents – NADES and are envisaged to play a major role on the chemical engineering processes of the future. Nonetheless, there is a significant lack of knowledge of its fundamental and basic properties, which is hindering their industrial applications. For this reason it is important to extend the knowledge on these systems, boosting their application development [1]. In this work, we have developed and characterized NADES based on choline chloride, organic acids, amino acids and sugars. Their density, thermal behavior, conductivity and polarity were assessed for different compositions. The conductivity was measured from 0 to 40 °C and the temperature effect was well described by the Vogel-Fulcher-Tammann equation. The morphological characterization of the crystallizable materials was done by polarized optical microscopy that provided also evidence of homogeneity/phase separation. Additionally, the rheological and thermodynamic properties of the NADES and the effect of water content were also studied. The results show these systems have Newtonian behavior and present significant viscosity decrease with temperature and water content, due to increase on the molecular mobility. The anhydrous systems present viscosities that range from higher than 1000Pa.s at 20°C to less than 1Pa.s at 70°C. DSC characterization confirms that for water content as high as 1:1:1 molar ratio, the mixture retains its single phase behavior. The results obtained demonstrate that the NADES properties can be finely tunned by careful selection of its constituents. NADES present the necessary properties for use as extraction solvents. They can be prepared from inexpensive raw materials and tailored for the selective extraction of target molecules. The data produced in this work is hereafter importance for the selection of the most promising candidates avoiding a time consuming and expensive trial and error phase providing also data for the development of models able to predict their properties and the mechanisms that allow the formation of the deep eutectic mixtures.
Resumo:
Heat transfer, micro channel, single phase flow, two phase flow, boiling, boiling regions
Resumo:
Fault location has been studied deeply for transmission lines due to its importance in power systems. Nowadays the problem of fault location on distribution systems is receiving special attention mainly because of the power quality regulations. In this context, this paper presents an application software developed in Matlabtrade that automatically calculates the location of a fault in a distribution power system, starting from voltages and currents measured at the line terminal and the model of the distribution power system data. The application is based on a N-ary tree structure, which is suitable to be used in this application due to the highly branched and the non- homogeneity nature of the distribution systems, and has been developed for single-phase, two-phase, two-phase-to-ground, and three-phase faults. The implemented application is tested by using fault data in a real electrical distribution power system
Resumo:
The structural and magnetic properties of stoichiometric Ni2MnAl are studied to clarify the conditions for ferromagnetic and antiferromagnetic ordering claimed to occur in this compound. X-ray and magnetization measurements show that although a single phase B2 structure can be stabilized at room temperature, a single L21 phase is not readily stabilized, but rather a mixed L21+B2 state occurs. The mixed state incorporates ferromagnetic and antiferromagnetic parts for which close-lying Curie and a Néel temperatures can be identified from magnetization measurements.
Resumo:
The synthesis of spinel ferrites with composition Zn1-2xNaxFe2+xO4has been performed and the composition range in which single phase samples are obtained has been defined. The characterization of the samples has been carried out from atomic absorption and X-ray fluorescence analyses, X-ray diffraction patterns, Mössbauer spectroscopy and thermomagnetic measurements. It is show that significant loss of Na does exist when the synthesis is performed at high temperatures. When the Na volatilization is avoided spinel oxides with Na content up to 0.25 atoms per unit formula can be obtained. In this case the increase of the interatomic distances leads to differing fundamental magnetic properties as compared to the equivalent lithium-zinc ferrites.
Resumo:
Thermal and field-induced martensite-austenite transition was studied in melt spun Ni50.3Mn35.3Sn14.4 ribbons. Its distinct highly ordered columnarlike microstructure normal to ribbon plane allows the direct observation of critical fields at which field-induced and highly hysteretic reverse transformation starts (H=17kOe at 240K), and easy magnetization direction for austenite and martensite phases with respect to the rolling direction. Single phase L21 bcc austenite with TC of 313K transforms into a 7M orthorhombic martensite with thermal hysteresis of 21K and transformation temperatures of MS=226K, Mf=218K, AS=237K, and Af=244K
Resumo:
Diplomityön tarkoituksena on kehittää tietokoneohjelma putkilämmönsiirtimen vaippapuolen painehäviön laskemiseksi. Ohjelmalla voidaan varmistaa lämmönsiirtimen mitoitusvaiheessa, että vaippapuolen painehäviö ei ylitä sallittuja rajoja. Ohjelmatäydentää olemassa olevia mitoitusohjelmia. Tässä diplomityössä käsitellään ainoastaan höyryvoimalaitosprosesseissa käytettäviä putkilämmönsiirtimiä. Työn kirjallisessa osassa on selvitetty periaate höyryvoimalaitosprosessista ja siinä käytettävistä putkilämmönsiirtimistä sekä esitetty putkilämmönsiirtimien rakenne, yleinen suunnittelu ja lämpö- ja virtaustekninen mitoitus. Painehäviön laskennassa käytetyt ja lämpö- ja virtausteknistä mitoitusta käsittelevässä kappaleessa esitetyt yhtälöt perustuvat Bell-Delawaren menetelmään. Painehäviönlaskentaohjelma on toteutettu hyväksikäyttäen Microsoft Excel taulukkolaskentaa ja Visual Basic -ohjelmointikieltä. Painehäviön laskenta perustuu segmenttivälilevyillä varustetun putkilämmönsiirtimen vaippapuolen yksifaasivirtaukseen. Lämmönsiirtimen lauhdutinosan painehäviö oletetaan merkityksettömäksi, joten kokonaispainehäviö muodostuu höyryn- ja lauhteenjäähdyttimessä. Kehitetty ohjelma on suunniteltu erityisesti lauhteenjäähdyttimessä muodostuvan painehäviön laskentaan. Ohjelmalla laskettuja painehäviön arvoja on verrattu todellisesta lämmönsiirtimestä mitattuihin arvoihin. Lasketut arvotvastaavat hyvin mittaamalla saatuja, eikä tuloksissa ilmene mitään systemaattista virhettä. Ohjelma on valmis käytettäväksi putkilämmönsiirtimien mitoitustyökaluna. Diplomityön pohjalta on tehty ehdotukset ohjelman edelleen kehittämiseksi.