976 resultados para Single frequency
Resumo:
Post-stroke objective or subjective fatigue occurs in around 50% of patients and is frequent (30%) even after minor strokes. It can last more than one year after the event, and is characterised by a different quality from usual fatigue and good response to rest. Associated risk factors include age, single patients, female, disability, depression, attentional impairment and sometimes posterior strokes, but also inactivity, overweight, alcohol and sleep apnoea syndrome. There are few therapy studies, but treatment may include low-intensity training, cognitive therapy, treatment of associated depression, wakefulness-promoting agents like modafinil, correction of risk factors and adaptation of activities.
Resumo:
In social Hymenoptera (ants, bees, and wasps), the number of males that mate with the same queen affects social and genetic organization of the colony. However, the selective forces leading to single mating in certain conditions and multiple mating in others remain enigmatic. In this study, I investigated whether queens of the wood ant Formica paralugubris adopting different dispersal strategies varied in their mating frequency (the number of males with whom they mated). The frequency of multiple mating was determined by using microsatellite markers to genotype the sperm stored in the spermatheca of queens, and the validity of this method was confirmed by analysing mother-offspring combinations obtained from experimental single-queen colonies. Dispersing queens, which may found new colonies, did not mate with more males than queens that stayed within polygynous colonies, where the presence of numerous reproductive individuals ensured a high level of genetic diversity. Hence, this study provides no support to the hypotheses that multiple mating is beneficial because it increases genetic variability within colonies. Most of the F. paralugubris queens mated with a single male, whatever their dispersal strategy and life history. Moreover, multiple mating had little effect on colony genetic structure: the effective mating frequency was 1.11 when calculated from within-brood relatedness, and 1.13 when calculated from the number of mates detected in the sperm. Hence, occasional multiple mating by F. paralugubris queens may have no adaptive significance.
Resumo:
The relationship between electrophysiological and functional magnetic resonance imaging (fMRI) signals remains poorly understood. To date, studies have required invasive methods and have been limited to single functional regions and thus cannot account for possible variations across brain regions. Here we present a method that uses fMRI data and singe-trial electroencephalography (EEG) analyses to assess the spatial and spectral dependencies between the blood-oxygenation-level-dependent (BOLD) responses and the noninvasively estimated local field potentials (eLFPs) over a wide range of frequencies (0-256 Hz) throughout the entire brain volume. This method was applied in a study where human subjects completed separate fMRI and EEG sessions while performing a passive visual task. Intracranial LFPs were estimated from the scalp-recorded data using the ELECTRA source model. We compared statistical images from BOLD signals with statistical images of each frequency of the eLFPs. In agreement with previous studies in animals, we found a significant correspondence between LFP and BOLD statistical images in the gamma band (44-78 Hz) within primary visual cortices. In addition, significant correspondence was observed at low frequencies (<14 Hz) and also at very high frequencies (>100 Hz). Effects within extrastriate visual areas showed a different correspondence that not only included those frequency ranges observed in primary cortices but also additional frequencies. Results therefore suggest that the relationship between electrophysiological and hemodynamic signals thus might vary both as a function of frequency and anatomical region.
Resumo:
AIMS: The objectives of this study were to analyse (a) the distribution of risky single-occasion drinking (RSOD) among 19-year-old men in Switzerland and (b) to show the percentage of all alcohol consumption in the form of RSOD. METHODS: The study was based on a census of Swiss francophone 19-year-old men consecutively reporting for processing. The study was conducted at Army Recruitment Center. The participants were 4116 recruits consecutively enrolling for mandatory army recruitment procedures between 23 January and 29 August in 2007. The measures were alcohol consumption measured in drinks of approximately 10 g of pure alcohol, number of drinking occasions with six or more drinks (RSOD) in the past 12 months and a retrospective 1 week drinking diary. RESULTS: 264 recruits were never seen by the research staff, 3536 of the remaining 3852 conscripts completed a questionnaire which showed that 7.2% abstained from alcohol and 75.5% of those drinking had an RSOD day at least monthly. The typical frequency of drinking was 1-3 days per week on weekends. The average quantity on weekends was about seven drinks, 69.3% of the total weekly consumption was in the form of RSOD days, and of all the alcohol consumed, 96.2% was by drinkers who had RSOD days at least once a month. CONCLUSION: Among young men, RSOD constitutes the norm. Prevention consequently must address the total population and not only high-risk drinkers.
Resumo:
Although there is consensus that the central nervous system mediates the increases in maximal voluntary force (maximal voluntary contraction, MVC) produced by resistance exercise, the involvement of the primary motor cortex (M1) in these processes remains controversial. We hypothesized that 1-Hz repetitive transcranial magnetic stimulation (rTMS) of M1 during resistance training would diminish strength gains. Forty subjects were divided equally into five groups. Subjects voluntarily (Vol) abducted the first dorsal interosseus (FDI) (5 bouts x 10 repetitions, 10 sessions, 4 wk) at 70-80% MVC. Another group also exercised but in the 1-min-long interbout rest intervals they received rTMS [Vol+rTMS, 1 Hz, FDI motor area, 300 pulses/session, 120% of the resting motor threshold (rMT)]. The third group also exercised and received sham rTMS (Vol+Sham). The fourth group received only rTMS (rTMS_only). The 37.5% and 33.3% gains in MVC in Vol and Vol+Sham groups, respectively, were greater (P = 0.001) than the 18.9% gain in Vol+rTMS, 1.9% in rTMS_only, and 2.6% in unexercised control subjects who received no stimulation. Acutely, within sessions 5 and 10, single-pulse TMS revealed that motor-evoked potential size and recruitment curve slopes were reduced in Vol+rTMS and rTMS_only groups and accumulated to chronic reductions by session 10. There were no changes in rMT, maximum compound action potential amplitude (M(max)), and peripherally evoked twitch forces in the trained FDI and the untrained abductor digiti minimi. Although contributions from spinal sources cannot be excluded, the data suggest that M1 may play a role in mediating neural adaptations to strength training.
Resumo:
Background: oscillatory activity, which can be separated in background and oscillatory burst pattern activities, is supposed to be representative of local synchronies of neural assemblies. Oscillatory burst events should consequently play a specific functional role, distinct from background EEG activity – especially for cognitive tasks (e.g. working memory tasks), binding mechanisms and perceptual dynamics (e.g. visual binding), or in clinical contexts (e.g. effects of brain disorders). However extracting oscillatory events in single trials, with a reliable and consistent method, is not a simple task. Results: in this work we propose a user-friendly stand-alone toolbox, which models in a reasonable time a bump time-frequency model from the wavelet representations of a set of signals. The software is provided with a Matlab toolbox which can compute wavelet representations before calling automatically the stand-alone application. Conclusion: The tool is publicly available as a freeware at the address: http:// www.bsp.brain.riken.jp/bumptoolbox/toolbox_home.html
Resumo:
In contrast with the low frequency of most single epitope reactive T cells in the preimmune repertoire, up to 1 of 1,000 naive CD8(+) T cells from A2(+) individuals specifically bind fluorescent A2/peptide multimers incorporating the A27L analogue of the immunodominant 26-35 peptide from the melanocyte differentiation and melanoma associated antigen Melan-A. This represents the only naive antigen-specific T cell repertoire accessible to direct analysis in humans up to date. To get insight into the molecular basis for the selection and maintenance of such an abundant repertoire, we analyzed the functional diversity of T cells composing this repertoire ex vivo at the clonal level. Surprisingly, we found a significant proportion of multimer(+) clonotypes that failed to recognize both Melan-A analogue and parental peptides in a functional assay but efficiently recognized peptides from proteins of self- or pathogen origin selected for their potential functional cross-reactivity with Melan-A. Consistent with these data, multimers incorporating some of the most frequently recognized peptides specifically stained a proportion of naive CD8(+) T cells similar to that observed with Melan-A multimers. Altogether these results indicate that the high frequency of Melan-A multimer(+) T cells can be explained by the existence of largely cross-reactive subsets of naive CD8(+) T cells displaying multiple specificities.
Resumo:
The objective of this work was to genotype the single nucleotide polymorphism (SNP) A2959G (AF159246) of bovine CAST gene by PCR-RFLP technique, and to report its use for the first time. For this, 147 Bos indicus and Bos taurus x Bos indicus animals were genotyped. The accuracy of the method was confirmed through the direct sequencing of PCR products of nine individuals. The lowest frequency of the meat tenderness favorable allele (A) in Bos indicus was confirmed. The use of PCR-RFLP for the genotyping of the bovine CAST gene SNP was shown to be robust and inexpensive, which will greatly facilitate its analysis by laboratories with basic structure.
Resumo:
A linkage between obesity-related phenotypes and the 2p21-23 locus has been reported previously. The urocortin (UCN) gene resides at this interval, and its protein decreases appetite behavior, suggesting that UCN may be a candidate gene for susceptibility to obesity. We localized the UCN gene by radiation hybrid mapping, and the surrounding markers were genotyped in a collection of French families. Evidence for linkage was shown between the marker D2S165 and leptin levels (LOD score, 1.34; P = 0.006) and between D2S2247 and the z-score of body mass index (LOD score, 1.829; P = 0.0019). The gene was screened for SNPs in 96 obese patients. Four new variants were established. Two single nucleotide polymorphisms were located in the promoter (-535 A-->G, -286 G-->A), one in intron 1 (+31 C-->G), and one in the 3'-untranslated region (+34 C-->T). Association studies in cohorts of 722 unrelated obese and 381 control subjects and transmission disequilibrium tests, performed for the two frequent promoter polymorphisms, in 120 families (894 individuals) showed that no association was present between these variants and obesity, obesity-related phenotypes, and diabetes. Thus, our analyses of the genetic variations of the UCN gene suggest that, at least in French Caucasians, they do not represent a major cause of obesity.
Resumo:
Myc controls the metabolic reprogramming that supports effector T cell differentiation. The expression of Myc is regulated by the T cell antigen receptor (TCR) and pro-inflammatory cytokines such as interleukin-2 (IL-2). We now show that the TCR is a digital switch for Myc mRNA and protein expression that allows the strength of the antigen stimulus to determine the frequency of T cells that express Myc. IL-2 signalling strength also directs Myc expression but in an analogue process that fine-tunes Myc quantity in individual cells via post-transcriptional control of Myc protein. Fine-tuning Myc matters and is possible as Myc protein has a very short half-life in T cells due to its constant phosphorylation by glycogen synthase kinase 3 (GSK3) and subsequent proteasomal degradation. We show that Myc only accumulates in T cells exhibiting high levels of amino acid uptake allowing T cells to match Myc expression to biosynthetic demands. The combination of digital and analogue processes allows tight control of Myc expression at the population and single cell level during immune responses.
Resumo:
Given their high sensitivity and ability to limit the field of view (FOV), surface coils are often used in magnetic resonance spectroscopy (MRS) and imaging (MRI). A major downside of surface coils is their inherent radiofrequency (RF) B1 heterogeneity across the FOV, decreasing with increasing distance from the coil and giving rise to image distortions due to non-uniform spatial responses. A robust way to compensate for B1 inhomogeneities is to employ adiabatic inversion pulses, yet these are not well adapted to all imaging sequences - including to single-shot approaches like echo planar imaging (EPI). Hybrid spatiotemporal encoding (SPEN) sequences relying on frequency-swept pulses provide another ultrafast MRI alternative, that could help solve this problem thanks to their built-in heterogeneous spatial manipulations. This study explores how this intrinsic SPEN-based spatial discrimination, could be used to compensate for the B1 inhomogeneities inherent to surface coils. Experiments carried out in both phantoms and in vivo rat brains demonstrate that, by suitably modulating the amplitude of a SPEN chirp pulse that progressively excites the spins in a direction normal to the coil, it is possible to compensate for the RF transmit inhomogeneities and thus improve sensitivity and image fidelity.
Resumo:
Human papillomavirus (HPV) infections of the high-risk types are strongly linked to the development of cervical carcinoma. The HPV oncoproteins E6 and E7 are thought to play a crucial role in this process through their interactions with the p53 protein and the retinoblastoma susceptibility gene product pRb, respectively. E6 binds to p53 protein promoting its degradation. This is considered to contribute to the oncogenesis of HPV-associated anogenital cancer. On the other hand, in HPV-negative cervical carcinoma, p53 mutations are thought to have a role in the transformation process. A total of 122 HPV-positive cervical carcinoma tissue samples were evaluated for the presence of mutations in exons 5-8 of the p53 gene by single-stranded conformation polymorphism analysis and DNA sequencing. Only four missense point mutations were detected. These findings suggest that other mechanisms independent of p53 inactivation may play a role in the genesis of cervical carcinomas.
Resumo:
We report a fast (less than 3 h) and cost-effective melting temperature assay method for the detection of single-nucleotide polymorphisms in the MBL2 gene. The protocol, which is based on the Corbett Rotor Gene real time PCR platform and SYBR Green I chemistry, yielded, in the cohorts studied, sensitive (100%) and specific (100%) PCR amplification without the use of costly fluorophore-labeled probes or post-PCR manipulation. At the end of the PCR, the dissociation protocol included a slow heating from 60º to 95ºC in 0.2ºC steps, with an 8-s interval between steps. Melting curve profiles were obtained using the dissociation software of the Rotor Gene-3000 apparatus. Samples were analyzed in duplicate and in different PCR runs to test the reproducibility of this technique. No supplementary data handling is required to determine the MBL2 genotype. MBL2 genotyping performed on a cohort of 164 HIV-1-positive Brazilian children and 150 healthy controls, matched for age and sex and ethnic origin, yielded reproducible results confirmed by direct sequencing of the amplicon performed in blind. The three MBL2 variants (Arg52Cys, Gly54Asp, Gly57Glu) were grouped together and called allele 0, while the combination of three wild-type alleles was called allele A. The frequency of the A/A homozygotes was significantly higher among healthy controls (0.68) than in HIV-infected children (0.55; P = 0.0234) and the frequency of MBL2 0/0 homozygotes was higher among HIV-1-infected children than healthy controls (P = 0.0296). The 0 allele was significantly more frequent among the 164 HIV-1-infected children (0.29) than among the 150 healthy controls (0.18; P = 0.0032). Our data confirm the association between the presence of the mutated MBL2 allele (allele 0) and HIV-1 infection in perinatally exposed children. Our results are in agreement with the literature data which indicate that the presence of the allele 0 confers a relative risk of 1.37 for HIV-1 infection through vertical transmission.
Resumo:
Even though frequency analysis of body sway is widely applied in clinical studies, the lack of standardized procedures concerning power spectrum estimation may provide unreliable descriptors. Stabilometric tests were applied to 35 subjects (20-51 years, 54-95 kg, 1.6-1.9 m) and the power spectral density function was estimated for the anterior-posterior center of pressure time series. The median frequency was compared between power spectra estimated according to signal partitioning, sampling rate, test duration, and detrending methods. The median frequency reliability for different test durations was assessed using the intraclass correlation coefficient. When increasing number of segments, shortening test duration or applying linear detrending, the median frequency values increased significantly up to 137%. Even the shortest test duration provided reliable estimates as observed with the intraclass coefficient (0.74-0.89 confidence interval for a single 20-s test). Clinical assessment of balance may benefit from a standardized protocol for center of pressure spectral analysis that provides an adequate relationship between resolution and variance. An algorithm to estimate center of pressure power density spectrum is also proposed.
Resumo:
We determined the effects of exercise training and detraining on the morphological and mechanical properties of left ventricular myocytes in 4-month-old spontaneously hypertensive rats (SHR) randomly divided into the following groups: sedentary for 8 weeks (SED-8), sedentary for 12 weeks (SED-12), treadmill-running trained for 8 weeks (TRA, 16 m/min, 60 min/day, 5 days/week), and treadmill-running trained for 8 weeks followed by 4 weeks of detraining (DET). At sacrifice, left ventricular myocytes were isolated enzymatically, and resting cell length, width, and cell shortening after stimulation at a frequency of 1 Hz (~25°C) were measured. Cell length was greater in TRA than in SED-8 (161.30 ± 1.01 vs 156.10 ± 1.02 μm, P < 0.05, 667 vs 618 cells, respectively) and remained larger after detraining. Cell width and volume were unaffected by either exercise training or detraining. Cell length to width ratio was higher in TRA than in SED-8 (8.50 ± 0.08 vs 8.22 ± 0.10, P < 0.05) and was maintained after detraining. Exercise training did not affect cell shortening, which was unchanged with detraining. TRA cells exhibited higher maximum velocity of shortening than SED-8 (102.01 ± 4.50 vs 82.01 ± 5.30 μm/s, P < 0.05, 70 cells per group), with almost complete regression after detraining. The maximum velocity of relengthening was higher in TRA cells than in SED-8 (88.20 ± 4.01 vs70.01 ± 4.80 μm/s, P < 0.05), returning to sedentary values with detraining. Therefore, exercise training affected left ventricle remodeling in SHR towards eccentric hypertrophy, which remained after detraining. It also improved single left ventricular myocyte contractile function, which was reversed by detraining.