958 resultados para Simulation-Numerical
Resumo:
This study analyzes the validity of different Q-factor models in the BER estimation in RZ-DPSK transmission at 40 Gb/s channel rate. The impact of the duty cycle of the carrier pulses on the accuracy of the BER estimates through the different models has also been studied.
Resumo:
Applying direct error counting, we compare the accuracy and evaluate the validity of different available numerical approaches to the estimation of the bit-error rate (BER) in 40-Gb/s return-to-zero differential phase-shift-keying transmission. As a particular example, we consider a system with in-line semiconductor optical amplifiers. We demonstrate that none of the existing models has an absolute superiority over the others. We also reveal the impact of the duty cycle on the accuracy of the BER estimates through the differently introduced Q-factors. © 2007 IEEE.
Resumo:
This paper presents a numerical study on the transport of ions and ionic solution in human corneas and the corresponding influences on corneal hydration. The transport equations for each ionic species and ionic solution within the corneal stroma are derived based on the transport processes developed for electrolytic solutions, whereas the transport across epithelial and endothelial membranes is modelled by using phenomenological equations derived from the thermodynamics of irreversible processes. Numerical examples are provided for both human and rabbit corneas, from which some important features are highlighted.
Resumo:
In this paper a mathematical model based on mass transfer in plant tissues is developed. The model takes into account the diffusion and convection of each constituent within the tissue. The driving force for the convection is assumed to be the gradient of hydrostatic pressure. The mass balance equation for the transport of each constituent is established separately for intracellular and extracellular volumes but taking into account the mass exchange across the cell membrane between the intracellular and extracellular volumes. The mass transfer results in not only the change of intracellular and extracellular volumes but also the shrinkage of whole tissue. The model allows us to quantitatively simulate the time evolution of intracellular and extracellular volumes, which was observed in histological sections under the microscope. © 2005 Elsevier B.V. All rights reserved.
Resumo:
Добри Данков, Владимир Русинов, Мария Велинова, Жасмина Петрова - Изследвана е химическа реакция чрез два начина за моделиране на вероятността за химическа реакция използвайки Direct Simulation Monte Carlo метод. Изследван е порядъка на разликите при температурите и концентрациите чрез тези начини. Когато активността на химическата реакция намалява, намаляват и разликите между концентрациите и температурите получени по двата начина. Ключови думи: Механика на флуидите, Кинетична теория, Разреден газ, DSMC
Resumo:
2000 Mathematics Subject Classification: primary: 60J80, 60J85, secondary: 62M09, 92D40
Resumo:
This thesis investigates the numerical modelling of Dynamic Position (DP) in pack ice. A two-dimensional numerical model for ship-ice interaction was developed using the Discrete Element Method (DEM). A viscous-elastic ice rheology was adopted to model the dynamic behaviour of the ice floes. Both the ship-ice and the ice-ice contacts were considered in the interaction force. The environment forces and the hydrodynamic forces were calculated by empirical formulas. After the current position and external forces were calculated, a Proportional-Integral-Derivative (PID) control and thrust allocation algorithms were applied on the vessel to control its motion and heading. The numerical model was coded in Fortran 90 and validated by comparing computation results to published data. Validation work was first carried out for the ship-ice interaction calculation, and former researchers’ simulation and model test results were used for the comparison. With confidence in the interaction model, case studies were conducted to predict the DP capability of a sample Arctic DP vessel.
Resumo:
A key issue in pulse detonation engine development is better understanding of the detonation structure and its propagation mechanism. Thus, in the present work the turbulent structure of an irregular detonation is studied through very high resolution numerical simulations of 600 points per half reaction length. The aim is to explore the nature of the transverse waves during the collision and reflection processes of the triple point with the channel walls. Consequently the formation and consumption mechanism of unreacted gas pockets is studied. Results show that the triple point and the transverse wave collide simultaneously with the wall. The strong transverse wave switches from a primary triple point before collision to a new one after reflection. Due to simultaneous interaction of the triple point and the transverse wave with the wall in the second half of the detonation cell, a larger high-pressurised region appears on the wall. During the reflection the reaction zone detaches from the shock front and produces a pocket of unburned gas. Three mechanisms found to be of significance in the re-initiation mechanism of detonation at the end of the detonation cell; i: energy resealed via consumption of unburned pockets by turbulent mixing ii: compression waves arise due to collision of the triple point on the wall which helps the shock to jump abruptly to an overdriven detonation iii: drastic growth of the Richtmyer–Meshkov instability causing a part of the front to accelerate with respect to the neighbouring portions.
Resumo:
Hybrid simulation is a technique that combines experimental and numerical testing and has been used for the last decades in the fields of aerospace, civil and mechanical engineering. During this time, most of the research has focused on developing algorithms and the necessary technology, including but not limited to, error minimisation techniques, phase lag compensation and faster hydraulic cylinders. However, one of the main shortcomings in hybrid simulation that has pre- vented its widespread use is the size of the numerical models and the effect that higher frequencies may have on the stability and accuracy of the simulation. The first chapter in this document provides an overview of the hybrid simulation method and the different hybrid simulation schemes, and the corresponding time integration algorithms, that are more commonly used in this field. The scope of this thesis is presented in more detail in chapter 2: a substructure algorithm, the Substep Force Feedback (Subfeed), is adapted in order to fulfil the necessary requirements in terms of speed. The effects of more complex models on the Subfeed are also studied in detail, and the improvements made are validated experimentally. Chapters 3 and 4 detail the methodologies that have been used in order to accomplish the objectives mentioned in the previous lines, listing the different cases of study and detailing the hardware and software used to experimentally validate them. The third chapter contains a brief introduction to a project, the DFG Subshake, whose data have been used as a starting point for the developments that are shown later in this thesis. The results obtained are presented in chapters 5 and 6, with the first of them focusing on purely numerical simulations while the second of them is more oriented towards a more practical application including experimental real-time hybrid simulation tests with large numerical models. Following the discussion of the developments in this thesis is a list of hardware and software requirements that have to be met in order to apply the methods described in this document, and they can be found in chapter 7. The last chapter, chapter 8, of this thesis focuses on conclusions and achievements extracted from the results, namely: the adaptation of the hybrid simulation algorithm Subfeed to be used in conjunction with large numerical models, the study of the effect of high frequencies on the substructure algorithm and experimental real-time hybrid simulation tests with vibrating subsystems using large numerical models and shake tables. A brief discussion of possible future research activities can be found in the concluding chapter.
Resumo:
The ultrasonic non-destructive testing of components may encounter considerable difficulties to interpret some inspections results mainly in anisotropic crystalline structures. A numerical method for the simulation of elastic wave propagation in homogeneous elastically anisotropic media, based on the general finite element approach, is used to help this interpretation. The successful modeling of elastic field associated with NDE is based on the generation of a realistic pulsed ultrasonic wave, which is launched from a piezoelectric transducer into the material under inspection. The values of elastic constants are great interest information that provide the application of equations analytical models, until small and medium complexity problems through programs of numerical analysis as finite elements and/or boundary elements. The aim of this work is the comparison between the results of numerical solution of an ultrasonic wave, which is obtained from transient excitation pulse that can be specified by either force or displacement variation across the aperture of the transducer, and the results obtained from a experiment that was realized in an aluminum block in the IEN Ultrasonic Laboratory. The wave propagation can be simulated using all the characteristics of the material used in the experiment evaluation associated to boundary conditions and from these results, the comparison can be made.
Resumo:
Abstract not available
Resumo:
The present paper is a report on progress in the simulation of turbulent flames using the Cray T3D and T3E at the Edinburgh parallel computing centre, using codes developed in Cambridge. Two combustion DNS codes are described, ANGUS and SENGA, which solve incompressible and fully compressible reacting flows respectively. The technical background to combustion DNS is presented, and the resource requirements explained in terms of the physic and chemistry of the problem. Results for flame turbulence interaction studies are presented and discussed in terms of their relevance to modelling. Recent work on the fully compressible problem is highlighted and future directions outlined.