882 resultados para Simulation and prediction


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The activities/properties of two molecules with identical formula but different configuration states of the asymmetric atoms are different. Thus, usually the common topological indices are not suitable. In this study, the chiral topological indices were obtained by extending A(mi) indices suggested by our laboratory and molecular connectivity indices. The modified topologial indices have been used for the studies on D2 for dopamine receptor and a receptor activities of fourteen N-alkylated 3-(3-hydroxypyenyl)-piperidines. It has been observed that selected variables possess low correlations. The results obtained by using multiple regression analysis and artificial neural networks are satisfactory.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Orthogonal descriptors is a viable method for variable selection, but this method strongly depend on the orthogonalisation ordering of the descriptors. In this paper, we compared the different methods used for order the descriptors. It showed that better results could be achieved with the use of backward elimination ordering. We predicted R-f value of phenol and aniline derivatives by this method, and compared it with classical algorithms such as forward selection, backward elimination, and stepwise procedure. Some interesting hints were obtained.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The applications of new topological indices A(x1)-A(x3) suggested in our laboratory for the prediction of Gibbs energy values of phase transfer (water to nitrobenzene) of amine ions are described with satisfactory results. Multiple regression analysis and neural network were employed simultaneously in this study.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new nonlinear integral transform of ocean wave spectra into Along-Track Interferometric Synthetic Aperture Radar (ATI-SAR) image spectra is described. ATI-SAR phase image spectra are calculated for various sea states and radar configurations based on the nonlinear integral transform. The numerical simulations show that the slant range to velocity ratio (R/V), significant wave height to ocean wavelength ratio (H-s/lambda), the baseline (2B) and incident angle (theta) affect ATI-SAR imaging. The ATI-SAR imaging theory is validated by means of Two X-band, HH-polarized ATI-SAR phase images of ocean waves and eight C-band, HH-polarized ATI-SAR phase image spectra of ocean waves. It is shown that ATI-SAR phase image spectra are in agreement with those calculated by forward mapping in situ directional wave spectra collected simultaneously with available ATI-SAR observations. ATI-SAR spectral correlation coefficients between observed and simulated are greater than 0.6 and are not sensitive to the degree of nonlinearity. However, the ATI-SAR phase image spectral turns towards the range direction, even if the real ocean wave direction is 30 degrees. It is also shown that the ATI-SAR imaging mechanism is significantly affected by the degree of velocity bunching nonlinearity, especially for high values of R/V and H-s/lambda.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Direct simulations of wind musical instruments using the compressible Navier Stokes equations have recently become possible through the use of parallel computing and through developments in numerical methods. As a first demonstration, the flow of air and the generation of musical tones inside a soprano recorder are simulated numerically. In addition, physical measurements are made of the acoustic signal generated by the recorder at different blowing speeds. The comparison between simulated and physically measured behavior is encouraging and points towards ways of improving the simulations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pattison,T. and Wilson,M.S., 'Flocking in Simulation and Robots - A Review', Towards Intelligent Mobile Robots; Proceedings of the 4th annual British conference on autonomous mobile robotics and autonomous systems (TIMR'03), 2003, pp 90-99

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A novel approach for real-time skin segmentation in video sequences is described. The approach enables reliable skin segmentation despite wide variation in illumination during tracking. An explicit second order Markov model is used to predict evolution of the skin color (HSV) histogram over time. Histograms are dynamically updated based on feedback from the current segmentation and based on predictions of the Markov model. The evolution of the skin color distribution at each frame is parameterized by translation, scaling and rotation in color space. Consequent changes in geometric parameterization of the distribution are propagated by warping and re-sampling the histogram. The parameters of the discrete-time dynamic Markov model are estimated using Maximum Likelihood Estimation, and also evolve over time. Quantitative evaluation of the method was conducted on labeled ground-truth video sequences taken from popular movies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

British Petroleum (89A-1204); Defense Advanced Research Projects Agency (N00014-92-J-4015); National Science Foundation (IRI-90-00530); Office of Naval Research (N00014-91-J-4100); Air Force Office of Scientific Research (F49620-92-J-0225)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In a constantly changing world, humans are adapted to alternate routinely between attending to familiar objects and testing hypotheses about novel ones. We can rapidly learn to recognize and narne novel objects without unselectively disrupting our memories of familiar ones. We can notice fine details that differentiate nearly identical objects and generalize across broad classes of dissimilar objects. This chapter describes a class of self-organizing neural network architectures--called ARTMAP-- that are capable of fast, yet stable, on-line recognition learning, hypothesis testing, and naming in response to an arbitrary stream of input patterns (Carpenter, Grossberg, Markuzon, Reynolds, and Rosen, 1992; Carpenter, Grossberg, and Reynolds, 1991). The intrinsic stability of ARTMAP allows the system to learn incrementally for an unlimited period of time. System stability properties can be traced to the structure of its learned memories, which encode clusters of attended features into its recognition categories, rather than slow averages of category inputs. The level of detail in the learned attentional focus is determined moment-by-moment, depending on predictive success: an error due to over-generalization automatically focuses attention on additional input details enough of which are learned in a new recognition category so that the predictive error will not be repeated. An ARTMAP system creates an evolving map between a variable number of learned categories that compress one feature space (e.g., visual features) to learned categories of another feature space (e.g., auditory features). Input vectors can be either binary or analog. Computational properties of the networks enable them to perform significantly better in benchmark studies than alternative machine learning, genetic algorithm, or neural network models. Some of the critical problems that challenge and constrain any such autonomous learning system will next be illustrated. Design principles that work together to solve these problems are then outlined. These principles are realized in the ARTMAP architecture, which is specified as an algorithm. Finally, ARTMAP dynamics are illustrated by means of a series of benchmark simulations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

FEA and CFD analysis is becoming ever more complex with an emerging demand for simulation software technologies that can address ranges of problems that involve combinations of interactions amongst varying physical phenomena over a variety of time and length scales. Computation modelling of such problems requires software technologies that enable the representation of these complex suites of 'physical' interactions. This functionality requires the structuring of simulation modules for specific physical phemonmena so that the coupling can be effectiely represented. These 'multi-physics' and 'multi-scale' computations are very compute intensive and so the simulation software must operate effectively in parallel if it is to be used in this context. Of course the objective of 'multi-physics' and 'multi-scale' simulation is the optimal design of engineered systems so optimistation is an important feature of such classes of simulation. In this presentation, a multi-disciplinary approach to simulation based optimisation is described with some key examples of application to challenging engineering problems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Time-series analysis and prediction play an important role in state-based systems that involve dealing with varying situations in terms of states of the world evolving with time. Generally speaking, the world in the discourse persists in a given state until something occurs to it into another state. This paper introduces a framework for prediction and analysis based on time-series of states. It takes a time theory that addresses both points and intervals as primitive time elements as the temporal basis. A state of the world under consideration is defined as a set of time-varying propositions with Boolean truth-values that are dependent on time, including properties, facts, actions, events and processes, etc. A time-series of states is then formalized as a list of states that are temporally ordered one after another. The framework supports explicit expression of both absolute and relative temporal knowledge. A formal schema for expressing general time-series of states to be incomplete in various ways, while the concept of complete time-series of states is also formally defined. As applications of the formalism in time-series analysis and prediction, we present two illustrating examples.