757 resultados para Silicic Magmas


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Jericho kimberlite (173.1. ±. 1.3. Ma) is a small (~. 130. ×. 70. m), multi-vent system that preserves products from deep (>. 1. km?) portions of kimberlite vents. Pit mapping, drill core examination, petrographic study, image analysis of olivine crystals (grain size distributions and shape studies), and compositional and mineralogical studies, are used to reconstruct processes from near-surface magma ascent to kimberlite emplacement and alteration. The Jericho kimberlite formed by multiple eruptions through an Archean granodiorite batholith that was overlain by mid-Devonian limestones ~. 1. km in thickness. Kimberlite magma ascended through granodiorite basement by dyke propagation but ascended through limestone, at least in part, by locally brecciating the host rocks. After the first explosive breakthrough to surface, vent deepening and widening occurred by the erosive forces of the waxing phase of the eruption, by gravitationally induced failures as portions of the vent margins slid into the vent and, in the deeper portions of the vent (>. 1. km), by scaling, as thin slabs burst from the walls into the vent. At currently exposed levels, coherent kimberlite (CK) dykes (<. 40. cm thick) are found to the north and south of the vent complex and represent the earliest preserved in-situ products of Jericho magmatism. Timing of CK emplacement on the eastern side of the vent complex is unclear; some thick CK (15-20. m) may have been emplaced after the central vent was formed. Explosive eruptive products are preserved in four partially overlapping vents that are roughly aligned along strike with the coherent kimberlite dyke. The volcaniclastic kimberlite (VK) facies are massive and poorly sorted, with matrix- to clast-supported textures. The VK facies fragmented by dry, volatile-driven processes and were emplaced by eruption column collapse back into the volcanic vents. The first explosive products, poorly preserved because of partial destruction by later eruptions, are found in the central-east vent and were formed by eruption column collapse after the vent was largely cleared of country rock debris. The next active vent was either the north or south vent. Collapse of the eruption column, linked to a vent widening episode, resulted in coeval avalanching of pipe margin walls into the north vent, forming interstratified lenses of country rock-rich boulder breccias in finer-grained volcaniclastic kimberlite. South vent kimberlite has similar characteristics to kimberlite of the north vent and likely formed by similar processes. The final eruptive phase formed olivine-rich and moderately sorted deposits of the central vent. Better sorting is attributed to recycling of kimberlite debris by multiple eruptions through the unconsolidated volcaniclastic pile and associated collapse events. Post-emplacement alteration varies in intensity, but in all cases, has overprinted the primary groundmass and matrix, in CK and VK, respectively. Erosion has since removed all limestone cover.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The paper presents data on petrology, bulk rock and mineral compositions, and textural classification of the Middle Jurassic Jericho kimberlite (Slave craton, Canada). The kimberlite was emplaced as three steep-sided pipes in granite that was overlain by limestones and minor soft sediments. The pipes are infilled with hypabyssal and pyroclastic kimberlites and connected to a satellite pipe by a dyke. The Jericho kimberlite is classified as a Group Ia, lacking groundmass tetraferriphlogopite and containing monticellite pseudomorphs. The kimberlite formed, during several consecutive emplacement events of compositionally different batches of kimberlite magma. Core-logging and thin-section observations identified at least two phases of hypabyssal kimberlites and three phases of pyroclastic kimberlites. Hypabyssal kimberlites intruded as a main dyke (HK1) and as late small-volume aphanitic and vesicular dykes. Massive pyroclastic kimberlite (MPK1) predominantly filled the northern and southern lobes of the pipe and formed from magma different from the HK1 magma. The MPK1 magma crystallized Ti-, Fe-, and Cr-rich phlogopite without rims of barian phlogopite, and clinopyroxene and spinel without atoll structures. MPK1 textures, superficially reminiscent of tuffisitic kimberlite, are caused by pervasive contamination by granite xenoliths. The next explosive events filled the central lobe with two varieties of pyroclastic kimberlite: (1) massive and (2) weakly bedded, normally graded pyroclastic kimberlite. The geology of the Jericho pipe differs from the geology of South African or the Prairie kimberlites, but may resemble Lac de Gras pipes, in which deeper erosion removed upper fades of resedimented kimberlites.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study brings new insights into the magmatic evolution of natural F-enriched peraluminous granitic systems. The Artjärvi, Sääskjärvi and Kymi granite stocks within the 1.64 Ga Wiborg rapakivi granite batholith have been investigated by petrographic, geochemical, experimental and melt inclusion methods. These stocks represent late-stage leucocratic and weakly peraluminous intrusive phases typical of rapakivi granites worldwide. The Artjärvi and Sääskjärvi stocks are multiphase intrusions in which the most evolved phase is topaz granite. The Kymi stock contains topaz throughout and has a well-developed zoned structure, from the rim to the center: stockscheider pegmatite equigranular topaz granite porphyritic topaz granite. Geochemically the topaz granites are enriched in F, Li, Be, Ga, Rb, Sn and Nb and depleted in Mg, Fe, Ti, Ba, Sr, Zr and Eu. The anomalous geochemistry and mineralogy of the topaz granites are essentially magmatic in origin; postmagmatic reactions have only slightly modified the compositions. The Kymi equigranular topaz granite shows the most evolved character, and the topaz granites at Artjärvi and Sääskjärvi resemble the less evolved porphyritic topaz granite of the Kymi stock. Stockscheiders are found at the roof contacts of the Artjärvi and Kymi stocks. The stockscheider at Artjärvi is composed of biotite-rich schlieren and pegmatite layers parallel to the contact. The schlieren layering is considered to have formed by velocity-gradient sorting mechanism parallel to the flow, which led to the accumulation of mafic minerals along the upper contact of the topaz granite. Cooling and contraction of the topaz granite formed fractures parallel to the roof contact and residual pegmatite magmas were injected along the fractures and formed the pegmatite layers. The zoned structure of the Kymi stock is the result of intrusion of highly evolved residual melt from deeper parts of the magma chamber along the fractured contact between the porphyritic granite crystal mush and country rock. The equigranular topaz granite and marginal pegmatite (stockscheider) crystallized from this evolved melt. Phase relations of the Kymi equigranular topaz granite have been investigated utilizing crystallization experiments at 100 to 500 MPa as a function of water activity and F content. Fluorite and topaz can crystallize as liquidus phases in F-rich peraluminous systems, but the F content of the melt should exceed 2.5 - 3.0 wt % to facilitate crystallization of topaz. In peraluminous F-bearing melts containing more than 1 wt % F, topaz and muscovite are expected to be the first F-bearing phases to crystallize at high pressure, whereas fluorite and topaz should crystallize first at low pressure. Overall, the saturation of fluorite and topaz follows the reaction: CaAl2Si2O8 (plagioclase) + 2[AlF3]melt = CaF2 (fluorite) + 2Al2SiO4F2 (topaz). The obtained partition coefficient for F between biotite and glass D(F)Bt/glass is 1.89 to 0.80 (average 1.29) and can be used as an empirical fluormeter to determine the F content of coexisting melts. In order to study the magmatic evolution of the Kymi stock, crystallized melt inclusions in quartz and topaz grains in the porphyritic and the equigranular topaz granites and the marginal pegmatite were rehomogenized and analyzed. The homogenization conditions for the melt inclusions from the granites were 700 °C, 300 MPa, and 24 h, and for melt inclusions from the pegmatite, 700 °C, 100 MPa, and 24/96 h. The majority of the melt inclusions is chemically similar to the bulk rocks (excluding H2O content), but a few melt inclusions in the equigranular granite show clearly higher F and low K2O contents (on average 11.6 wt % F, 0.65 wt % K2O). The melt inclusion compositions indicate coexistence of two melt fractions, a prevailing peraluminous and a very volatile-rich, possibly peralkaline. Combined petrological, experimental and melt inclusion studies of the Kymi equigranular topaz granite indicate that plagioclase was the liquidus phase at nearly water-saturated (fluid-saturated) conditions and that the F content of the melt was at least 2 wt %. The early crystallization of biotite and the presence of muscovite in crystallization experiments at 200 MPa contrasts with the late-stage crystallization of biotite and the absence of muscovite in the equigranular granite, indicating that crystallization pressure may have been lower than 200 MPa for the granite.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sapphirine-cordierite intergrowths occur as pods within garnet-absent, high-Mg orthopyroxene-granulite xenoliths in the Kambam valley, Madurai Block, southern India. Whereas the cores of the pods are composed of sapphirine (X-Mg = 0.871-0.897) - cordierite (X-Mg = 0.892-0.931) intergrowth along with rutile, zircon and monazite, the rims are characterized by cordierite, apatite, plagioclase, K-feldspar, quartz and minor calcite. The surrounding matrix comprises orthopyroxene (maximum Al2O3 4.1 wt.%, X-Mg 0.848-0.850), plagioclase, biotite and quartz, similar to the assemblage in the surrounding charnockites. Sapphirine in the Kambam rocks is characterized by high Al contents with an end-member composition in the range of 7:9:3 and 3:5:1. The occurrence of peraluminous sapphirine in association with cordierite and in the absence of phases such as sillimanite and garnet is distinct from ultrahigh-temperature assemblages in other localities within the Madurai Block. The peraluminous composition of the pods suggests that these domains could represent cryptic pathways through which aluminous melts migrated. The reaction of such peraluminous melts with Mg-rich orthopyroxene in the host granulite at temperatures of 1025 degrees C and pressures around 8 kbar as computed from phase equilibria modeling followed by an isobaric cooling is inferred to have generated the sapphirine-cordierite pods. The unusual high-Mg orthopyroxene granulite suggests interaction of supracrustal rocks with mafic magmas, which probably acted as the heat source for the partial melting of lower crust and UHT metamorphism.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mitochondria are indispensable organelles implicated in multiple aspects of cellular processes, including tumorigenesis. Heat shock proteins play a critical regulatory role in accurately delivering the nucleus-encoded proteins through membrane-bound presequence translocase (Tim23 complex) machinery. Although altered expression of mammalian presequence translocase components had been previously associated with malignant phenotypes, the overall organization of Tim23 complexes is still unsolved. In this report, we show the existence of three distinct Tim23 complexes, namely, B1, B2, and A, involved in the maintenance of normal mitochondrial function. Our data highlight the importance of Magmas as a regulator of translocase function and in dynamically recruiting the J-proteins DnaJC19 and DnaJC15 to individual translocases. The basic housekeeping function involves translocases B1 and B2 composed of Tim17b isoforms along with DnaJC19, whereas translocase A is nonessential and has a central role in oncogenesis. Translocase B, having a normal import rate, is essential for constitutive mitochondrial functions such as maintenance of electron transport chain complex activity, organellar morphology, iron-sulfur cluster protein biogenesis, and mitochondrial DNA. In contrast, translocase A, though dispensable for housekeeping functions with a comparatively lower import rate, plays a specific role in translocating oncoproteins lacking presequence, leading to reprogrammed mitochondrial functions and hence establishing a possible link between the TIM23 complex and tumorigenicity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

ENGLISH: Near surface nutrient distributions in the eastern tropical Pacific Ocean, using data from the EASTROPAC Expedition of 1967-68 and pre~EASTROPAC data, are described. Nutrient concentrations were maximal along the equator, in the Peru Current and its offshore extension, and in the Costa Rica Dome and westward tensions of this feature. Nutrient-poor water was found north of the equator well offshore. In this water nitrate was often undetectable (<0.1 µg-at/liter) at the surface, but phosphate and silicic acid concentrations were moderate. Enrichment experiments showed that nitrogen was the primary limiting nutrient in poor water even though large amounts of organic N were found. Half saturation constants (K s ) were determined for ammonium-supported phytoplankton growth. These data were used to calculate near-surface primary productivity values which compared favorably with 14C values. Assimilation ratio measurements indicated that algae were not extremely nitrogen-deficient. Laboratory-determined K, values for phosphate and silicic acid indicated that these nutrients were rarely limiting. In rich water, chlorophyll levels were less than expected from nutrient levels, and this anomaly may be related to limitation by nutrients other than nitrogen (N), phosphorus (P), or silicon (Si), or to grazing. SPANISH: Se describe la distribución subsuperficial de los nutrientes en el Océano Pacífico oriental tropical, empleando los datos de la Expedición EASTROPAC de 1967~68 y datos anteriores a éstos. La concentración de nutrientes fue máxima a lo largo del ecuador, en la Corriente del Perú, en su prolongación mar afuera, en el Domo de Costa Rica y en las prolongaciones occidentales de esta característica. Se encontraron aguas pobres en nutrientes al norte del ecuador y bastante mar adentro. En estas aguas el nitrato era casi imperceptible (<0.1 µg-at/litro) en la superficie, pero las concentraciones de fosfato y ácido silícico fueron moderadas. Los experimentos de enriquecimiento indicaron que el nitrógeno era el principal nutriente limitante en aguas pobres, aun cuando se encontraron grandes cantidades de nitrógeno orgánico. Se determinaron las constantes de saturación media (K s ) para el desarrollo del fitoplancton sostenido por el amonio. Estos datos se emplearon para calcular los valores de la productividad primaria cerca a la superficie que pueden compararse favorablemente con los valores del 14C. Las medidas de la proporción de asimilación indican que las algas no tenían una deficiencia extremada de nitrógeno. Los valores determinados en el laboratorio de K, para el fosfato y ácido silícico indicaron que estos nutrientes limitaron rara vez la producción. En aguas ricas, los niveles de clorofila fueron inferiores a lo esperado según los niveles nutritivos y esta anomalía puede relacionarse a la alimentación o a la escasez de otros nutrientes distintos al nitrógeno (N), fósforo (P) o silicio (Si).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Oxygen isotopes were measured in mineral separates from martian meteorites using laser fluorination and were found to be remarkably uniform in both δ18O and Δ17O, suggesting that martian magmas did not assimilate aqueously altered crust regardless of any other geochemical variations.

Measurements of Cl, F, H, and S in apatite from martian meteorites were made using the SIMS and NanoSIMS. Martian apatites are typically higher in Cl than terrestrial apatites from mafic and ultramafic rocks, signifying that Mars is inherently higher in Cl than Earth. Apatites from basaltic and olivine-phyric shergottites are as high in water as any terrestrial apatite from mafic and utramafic rocks, implying the possibility that martian magmas may be more similar in water abundance to terrestrial magmas than previously thought. Apatites from lherzolitic shergottites, nakhlites, chassignites, and ALH 84001 (all of which are cumulate rocks) are all lower in water than the basaltic and olivine-phyric shergottites, indicating that the slow-cooling accumulation process allows escape of water from trapped melts where apatite later formed. Sulfur is only high in some apatites from basaltic and olivine-phyric shergottites and low in all other SNCs from this study, which could mean that cumulate SNCs are low in all volatiles and that there are other controlling factors in basaltic and olivine-phyric magmas dictating the inclusion of sulfur into apatite.

Sulfur Kα X-rays were measured in SNC apatites using the electron probe. None of the peaks in the SNC spectra reside in the same position as anhydrite (where sulfur is 100% sulfate) or pyrite (where sulfur is 100% sulfide), but instead all SNC spectra peaks lie in between these two end member peaks, which implies that SNC apatites may be substituting some sulfide, as well as sulfate, into their structure. However, further work is needed to verify this hypothesis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Secondary-ion mass spectrometry (SIMS), electron probe analysis (EPMA), analytical scanning electron microscopy (SEM) and infrared (IR) spectroscopy were used to determine the chemical composition and the mineralogy of sub-micrometer inclusions in cubic diamonds and in overgrowths (coats) on octahedral diamonds from Zaire, Botswana, and some unknown localities.

The inclusions are sub-micrometer in size. The typical diameter encountered during transmission electron microscope (TEM) examination was 0.1-0.5 µm. The micro-inclusions are sub-rounded and their shape is crystallographically controlled by the diamond. Normally they are not associated with cracks or dislocations and appear to be well isolated within the diamond matrix. The number density of inclusions is highly variable on any scale and may reach 10^(11) inclusions/cm^3 in the most densely populated zones. The total concentration of metal oxides in the diamonds varies between 20 and 1270 ppm (by weight).

SIMS analysis yields the average composition of about 100 inclusions contained in the sputtered volume. Comparison of analyses of different volumes of an individual diamond show roughly uniform composition (typically ±10% relative). The variation among the average compositions of different diamonds is somewhat greater (typically ±30%). Nevertheless, all diamonds exhibit similar characteristics, being rich in water, carbonate, SiO_2, and K_2O, and depleted in MgO. The composition of micro-inclusions in most diamonds vary within the following ranges: SiO_2, 30-53%; K_2O, 12-30%; CaO, 8-19%; FeO, 6-11%; Al_2O_3, 3-6%; MgO, 2-6%; TiO_2, 2-4%; Na_2O, 1-5%; P_2O_5, 1-4%; and Cl, 1-3%. In addition, BaO, 1-4%; SrO, 0.7-1.5%; La_2O_3, 0.1-0.3%; Ce_2O_3, 0.3-0.5%; smaller amounts of other rare-earth elements (REE), as well as Mn, Th, and U were also detected by instrumental neutron activation analysis (INAA). Mg/(Fe+Mg), 0.40-0.62 is low compared with other mantle derived phases; K/ AI ratios of 2-7 are very high, and the chondrite-normalized Ce/Eu ratios of 10-21 are also high, indicating extremely fractionated REE patterns.

SEM analyses indicate that individual inclusions within a single diamond are roughly of similar composition. The average composition of individual inclusions as measured with the SEM is similar to that measured by SIMS. Compositional variations revealed by the SEM are larger than those detected by SIMS and indicate a small variability in the composition of individual inclusions. No compositions of individual inclusions were determined that might correspond to mono-mineralic inclusions.

IR spectra of inclusion- bearing zones exhibit characteristic absorption due to: (1) pure diamonds, (2) nitrogen and hydrogen in the diamond matrix; and (3) mineral phases in the micro-inclusions. Nitrogen concentrations of 500-1100 ppm, typical of the micro-inclusion-bearing zones, are higher than the average nitrogen content of diamonds. Only type IaA centers were detected by IR. A yellow coloration may indicate small concentration of type IB centers.

The absorption due to the micro-inclusions in all diamonds produces similar spectra and indicates the presence of hydrated sheet silicates (most likely, Fe-rich clay minerals), carbonates (most likely calcite), and apatite. Small quantities of molecular CO_2 are also present in most diamonds. Water is probably associated with the silicates but the possibility of its presence as a fluid phase cannot be excluded. Characteristic lines of olivine, pyroxene and garnet were not detected and these phases cannot be significant components of the inclusions. Preliminary quantification of the IR data suggests that water and carbonate account for, on average, 20-40 wt% of the micro-inclusions.

The composition and mineralogy of the micro-inclusions are completely different from those of the more common, larger inclusions of the peridotitic or eclogitic assemblages. Their bulk composition resembles that of potassic magmas, such as kimberlites and lamproites, but is enriched in H_2O, CO_3, K_2O, and incompatible elements, and depleted in MgO.

It is suggested that the composition of the micro-inclusions represents a volatile-rich fluid or a melt trapped by the diamond during its growth. The high content of K, Na, P, and incompatible elements suggests that the trapped material found in the micro-inclusions may represent an effective metasomatizing agent. It may also be possible that fluids of similar composition are responsible for the extreme enrichment of incompatible elements documented in garnet and pyroxene inclusions in diamonds.

The origin of the fluid trapped in the micro-inclusions is still uncertain. It may have been formed by incipient melting of a highly metasomatized mantle rocks. More likely, it is the result of fractional crystallization of a potassic parental magma at depth. In either case, the micro-inclusions document the presence of highly potassic fluids or melts at depths corresponding to the diamond stability field in the upper mantle. The phases presently identified in the inclusions are believed to be the result of closed system reactions at lower pressures.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Detailed oxygen, hydrogen and carbon isotope studies have been carried out on igneous and metamorphic rocks of the Stony Mountain complex, Colorado, and the Isle of Skye, Scotland, in order to better understand the problems of hydrothermal meteoric water-rock interaction.

The Tertiary Stony Mountain stock (~1.3 km in diameter), is composed of an outer diorite, a main mass of biotite gabbro, and an inner diorite. The entire complex and most of the surrounding country rocks have experienced various degrees of 18O depletion (up to 10 per mil) due to interaction with heated meteoric waters. The inner diorite apparently formed from a low-18O magma with δ18O ≃ +2.5, but most of the isotopic effects are a result of exchange between H2O and solidified igneous rocks. The low-18O inner diorite magma was probably produced by massive assimilation and/or melting of hydrothermally altered country rocks. The δ18O values of the rocks generally increase with increasing grain size, except that quartz typically has δ18O = +6 to +8, and is more resistant to hydrothermal exchange than any other mineral studied. Based on atom % oxygen, the outer diorites, gabbros, and volcanic rocks exhibit integrated water/rock ratios of 0.3 ± 0.2, 0.15 ± 0.1, and 0.2 ± 0.1, respectively. Locally, water/rock ratios attain values greater than 1.0. Hydrogen isotopic analyses of sericites, chlorites, biotites, and amphiboles range from -117 to -150. δD in biotites varies inversely with Fe/Fe+Mg, as predicted by Suzuoki and Epstein (1974), and positively with elevation, over a range of 600 m. The calculated δD of the mid-to-late-Tertiary meteoric waters is about -100. Carbonate δ13C values average -5.5 (PDB), within the generally accepted range for deep-seated carbon.

Almost all the rocks within 4 km of the central Tertiary intrusive complex of Skye are depleted in 18O. Whole-rock δ18O values of basalts (-7. 1 to +8.4), Mesozoic shales (-0.6 to + 12.4), and Precambrian sandstones (-6.2 to + 10.8) systematically decrease inward towards the center of the complex. The Cuillin gabbro may have formed from a 18O-depleted magma (depleted by about 2 per mil); δ18O of plagioclase (-7.1 to + 2.5) and pyroxene (-0.5 to + 3.2) decrease outward toward the margins of the pluton. The Red Hills epigranite plutons have δ18O quartz (-2.7 to + 7.6) and feldspar (-6.7 to + 6.0) that suggest about 3/4 of the exchange took place at subsolidus temperatures; profound disequilibrium quartz-feldspar fractionations (up to 12) are characteristic. The early epigranites were intruded as low-18O melts (depletions of up to 3 per mil) with δ18O of the primary, igneous quartz decreasing progressively with time. The Southern Porphyritic Epigranite was apparently intruded as a low-18O magma with δ18O ≃ -2.6. A good correlation exists between grain size and δ18O for the unique, high-18O Beinn an Dubhaich granite which intrudes limestone having a δ18O range of +0.5 to +20.8, and δ13C of -4.9 to -1.0. The δD values of sericites (-104 to -107), and amphiboles, chlorites, and biotites (-105 to -128) from the igneous rocks , indicate that Eocene surface waters at Skye had δD ≃ -90. The average water/rock ratio for the Skye hydrothermal system is approximately one; at least 2000 km3 of heated meteoric waters were cycled through these rocks.

Thus these detailed isotopic studies of two widely separated areas indicate that (1) 18O-depleted magmas are commonly produced in volcanic terranes invaded by epizonal intrusions; (2) most of the 18O-depletion in such areas are a result of subsolidus exchange (particularly of feldspars); however correlation of δ18O with grain size is generally preserved only for systems that have undergone relatively minor meteoric hydrothermal exchange; (3) feldspar and calcite are the minerals mos t susceptible to oxygen isotopic exchange, whereas quartz is very resistant to oxygen isotope exchange; biotite, magnetite, and pyroxene have intermediate susceptibilities; and (4) basaltic country rocks are much more permeable to the hydrothermal convective system than shale, sandstone, or the crystalline basement complex.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

(1) Equation of State of Komatiite

The equation of state (EOS) of a molten komatiite (27 wt% MgO) was detennined in the 5 to 36 GPa pressure range via shock wave compression from 1550°C and 0 bar. Shock wave velocity, US, and particle velocity, UP, in km/s follow the linear relationship US = 3.13(±0.03) + 1.47(±0.03) UP. Based on a calculated density at 1550°C, 0 bar of 2.745±0.005 glee, this US-UP relationship gives the isentropic bulk modulus KS = 27.0 ± 0.6 GPa, and its first and second isentropic pressure derivatives, K'S = 4.9 ± 0.1 and K"S = -0.109 ± 0.003 GPa-1.

The calculated liquidus compression curve agrees within error with the static compression results of Agee and Walker [1988a] to 6 GPa. We detennine that olivine (FO94) will be neutrally buoyant in komatiitic melt of the composition we studied near 8.2 GPa. Clinopyroxene would also be neutrally buoyant near this pressure. Liquidus garnet-majorite may be less dense than this komatiitic liquid in the 20-24 GPa interval, however pyropic-garnet and perovskite phases are denser than this komatiitic liquid in their respective liquidus pressure intervals to 36 GPa. Liquidus perovskite may be neutrally buoyant near 70 GPa.

At 40 GPa, the density of shock-compressed molten komatiite would be approximately equal to the calculated density of an equivalent mixture of dense solid oxide components. This observation supports the model of Rigden et al. [1989] for compressibilities of liquid oxide components. Using their theoretical EOS for liquid forsterite and fayalite, we calculate the densities of a spectrum of melts from basaltic through peridotitic that are related to the experimentally studied komatiitic liquid by addition or subtraction of olivine. At low pressure, olivine fractionation lowers the density of basic magmas, but above 14 GPa this trend is reversed. All of these basic to ultrabasic liquids are predicted to have similar densities at 14 GPa, and this density is approximately equal to the bulk (PREM) mantle. This suggests that melts derived from a peridotitic mantle may be inhibited from ascending from depths greater than 400 km.

The EOS of ultrabasic magmas was used to model adiabatic melting in a peridotitic mantle. If komatiites are formed by >15% partial melting of a peridotitic mantle, then komatiites generated by adiabatic melting come from source regions in the lower transition zone (≈500-670 km) or the lower mantle (>670 km). The great depth of incipient melting implied by this model, and the melt density constraint mentioned above, suggest that komatiitic volcanism may be gravitationally hindered. Although komatiitic magmas are thought to separate from their coexisting crystals at a temperature =200°C greater than that for modern MORBs, their ultimate sources are predicted to be diapirs that, if adiabatically decompressed from initially solid mantle, were more than 700°C hotter than the sources of MORBs and derived from great depth.

We considered the evolution of an initially molten mantle, i.e., a magma ocean. Our model considers the thermal structure of the magma ocean, density constraints on crystal segregation, and approximate phase relationships for a nominally chondritic mantle. Crystallization will begin at the core-mantle boundary. Perovskite buoyancy at > 70 GPa may lead to a compositionally stratified lower mantle with iron-enriched mangesiowiistite content increasing with depth. The upper mantle may be depleted in perovskite components. Olivine neutral buoyancy may lead to the formation of a dunite septum in the upper mantle, partitioning the ocean into upper and lower reservoirs, but this septum must be permeable.

(2) Viscosity Measurement with Shock Waves

We have examined in detail the analytical method for measuring shear viscosity from the decay of perturbations on a corrugated shock front The relevance of initial conditions, finite shock amplitude, bulk viscosity, and the sensitivity of the measurements to the shock boundary conditions are discussed. The validity of the viscous perturbation approach is examined by numerically solving the second-order Navier-Stokes equations. These numerical experiments indicate that shock instabilities may occur even when the Kontorovich-D'yakov stability criteria are satisfied. The experimental results for water at 15 GPa are discussed, and it is suggested that the large effective viscosity determined by this method may reflect the existence of ice VII on the Rayleigh path of the Hugoniot This interpretation reconciles the experimental results with estimates and measurements obtained by other means, and is consistent with the relationship of the Hugoniot with the phase diagram for water. Sound waves are generated at 4.8 MHz at in the water experiments at 15 GPa. The existence of anelastic absorption modes near this frequency would also lead to large effective viscosity estimates.

(3) Equation of State of Molybdenum at 1400°C

Shock compression data to 96 GPa for pure molybdenum, initially heated to 1400°C, are presented. Finite strain analysis of the data gives a bulk modulus at 1400°C, K'S. of 244±2 GPa and its pressure derivative, K'OS of 4. A fit of shock velocity to particle velocity gives the coefficients of US = CO+S UP to be CO = 4.77±0.06 km/s and S = 1.43±0.05. From the zero pressure sound speed, CO, a bulk modulus of 232±6 GPa is calculated that is consistent with extrapolation of ultrasonic elasticity measurements. The temperature derivative of the bulk modulus at zero pressure, θKOSθT|P, is approximately -0.012 GPa/K. A thermodynamic model is used to show that the thermodynamic Grüneisen parameter is proportional to the density and independent of temperature. The Mie-Grüneisen equation of state adequately describes the high temperature behavior of molybdenum under the present range of shock loading conditions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A Suíte Intrusiva Santa Clara está inserida na Província Estanífera de Rondônia, na porção SW do Cráton Amazônico. Essa suíte intrusiva é composta pelos maciços Santa Clara, Oriente Velho, Oriente Novo, Manteiga-Sul, Manteiga-Norte, Jararaca, Carmelo, Primavera e das Antas. Os litotipos que perfazem a Suíte Santa Clara ocorrem hospedados nas rochas do Complexo Jamari, uma associação polideformada composta por gnaisses ortoderivados e paraderivados. Características observadas em campo e em análises petrográficas permitiram subdividir o Maciço Santa Clara em cinco fácies distintas: fácies porfirítica, fácies isotrópica, fácies fina, fácies piterlítica e fácies viborgítica. Os litotipos observados correspondem a hornblenda-biotita granitos e biotita granitos intermediários a ácidos, com composições médias semelhantes àquelas verificadas para sienogranitos e monzogranitos. Geoquimicamente, três magmas podem ser identificados. O magma menos evoluído corresponde às rochas das fácies porfirítica e equigranular, e o mais evoluído compreende as fácies de granulometria fina e piterlítica. A fácies viborgítica representa o terceiro líquido magmático, e aparentemente é diferente de todas as outras fácies em termos de aspectos de campo e geoquímica. A análise litogeoquímica indica que estes granitoides são subalcalinos, bastante empobrecidos em MgO e exibem caráter metaluminoso a fracamente peraluminoso. Os padrões de elementos-traços evidenciam que tais granitóides possuem alto conteúdo em elementos incompatíveis (Rb, Zr, Y, Ta, Ce) e ETR, com exceção do Eu. Além disso, também exibem leve enriquecimento em LILE, forte depleção em elementos como Sr e Ti, e leve empobrecimento de Ba, indicando que o fracionamento de minerais como plagioclásio e titanita foi importante na evolução do líquido magmático analisado. A anomalia negativa de Nb indica envolvimento de material crustal nos processos magmáticos que geraram estes granitoides. Os litotipos analisados possuem características típicas de granitos tipo-A ferroan, e as razões FeOt/MgO entre 4,27 e 26,22 sugerem tratar-se de uma série de granitos félsicos fracionados. Os padrões de ETR observados para os litotipos analisados exibem um considerável enriquecimento em ETRL, e anomalia negativa de Eu, sugerindo fracionamento de feldspato durante o processo de diferenciação do líquido magmático. Diagramas discriminantes de ambientes tectônicos sugerem que os litotipos do Maciço Intrusivo Santa Clara são típicos de ambiente intraplaca, do tipo-A2, isto é, associados a ambientes pós-colisionais/pós-orogênicos. As características isotópicas observadas para os granitoides do Maciço Santa Clara sugerem que os mesmos foram gerados a partir da fusão parcial de uma crosta inferior pré-existente. As idades U-Pb entre 1,07 e 1,06 Ga são compatíveis com um magmatismo ocorrido nos estágios finais da colagem do supercontinente Rodínia (1,2-1,0 Ga) e estágios finais do Ciclo Orogênico Sunsás-Aguapeí (1320-1100 Ma). Sugere-se ainda que na verdade o Maciço Santa Clara seja formado por uma coalescência das três intrusões graníticas que são representadas pelos três magmas anteriormente descritos.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Os diamantes são minerais raros e de alto valor econômico. Estes minerais se formam em condições mantélicas, numa profundidade aproximada de 150 a 200 km e ascendem à superfície englobada em magmas alcalinos e carbonatíticos, nos kimberlitos e lamproitos (depósitos primários). No presente trabalho objetivou-se o estudo da geometria do Kimberlito Régis, o qual pertence à província alcalina do Brasil Meridional, localizado no estado de Minas Gerais, na cidade de Carmo do Paranaíba. Para este estudo foi realizada uma inversão gravimétrica 3D e uma modelagem utilizando dados de gravimetria e os resultados dos estudos de magnetometria (Menezes e La Terra, 2011) e CSAMT (La Terra e Menezes, 2012). As anomalias Bouguer e magnética foram então modeladas a partir de um resultado CSAMT, apresentando como resultado um conduto vulcânico com cerca de 2800 metros de profundidade e 200 metros de largura. Já o resultado da inversão mapeou um corpo com forma de cone invertido, apresentando contrastes de densidade negativos. A metodologia de integração de métodos geofísicos mostrou-se eficiente para estudos exploratórios de kimberlitos, apresentando rapidez e baixo custo quando comparados com os métodos tradicionais.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Os modelos para a formação de plútons alcalinos da Província Alcalina do Sudeste Brasileiro ou Alinhamento Poços de Caldas-Cabo Frio associam a gênese destas rochas a grandes reativações ou a passagem de uma pluma mantélica, registrada pelo traço de um hot spot. O objetivo desta tese é, apresentar novos dados e interpretações para contribuir com a melhor elucidação e discussão destes modelos. Os estudos incluem mapeamento, petrografia, litogeoquímica, geoquímica isotópica de Sr, Nd e Pb e datação 40Ar/39Ar. As intrusões selecionadas correspondem ao Morro Redondo, Mendanha e Morro de São João, no Rio de Janeiro, localizados em posições distintas no alinhamento Poços de Caldas-Cabo Frio. A intrusão alcalina do Morro Redondo é composta majoritariamente de nefelina sienitos e sienitos com nefelina, com rara ocorrência de rochas máficas e é caracterizada por uma suíte alcalina sódica insaturada em sílica, de caráter metaluminosa a peralcalina. Esta intrusão foi datada em aproximadamente 74 Ma (idade-platô 40Ar/39Ar). A intrusão alcalina do Mendanha é composta por diversos tipos de rochas sieníticas, além de brechas e estruturas subvulcânicas, como rochas piroclásticas e diques e caracteriza-se por ser uma suíte alcalina sódica saturada em sílica, de caráter metaluminosa, diferente do que ocorre no Marapicu, este subsaturado em sílica. Esta intrusão apresentou duas idades-platô 40Ar/39Ar distintas de magmatismo: 64 Ma para as rochas do Mendanha e 54 Ma em dique de lamprófiro, registrando magmatismo policíclico. O Morro do Marapicu foi datado em aproximadamente 80 Ma. Já a intrusão alcalina do Morro de São João possui uma ampla variedade de litotipos saturados a subsaturados em sílica, tais como sienitos, álcali-sienitos e monzossienitos (alguns portadores de pseudoleucita), com variedades melanocráticas, tais como malignitos e fergustios. Estas rochas definem suas distintas suítes alcalinas subsaturadas em sílica: Uma de composição sódica e outra potássica. Há também uma suíte alcalina saturada em sílica, definida por gabros alcalinos e shonkinitos. A petrogênese destas intrusões corresponde ao modelo de cristalização fracionada, com assimilação de rochas encaixantes (AFC) como indicado pela alta variabilidade de razões isotópicas de estrôncio. No Morro de São João é sugerido o modelo de mistura magmática. Estas intrusões foram geradas a partir de magmas mantélicos enriquecidos, possivelmente associados à antiga zona de subducção relacionada ao orógeno Ribeira. Em razão das novas idades obtidas, o modelo de hot spot proposto fica prejudicado, visto que o Marapicu é de idade mais antiga das intrusões analisadas, o que era esperado para o Morro Redondo. Alguns modelos projetam plumas mantélicas com aproximadamente 1000 km de diâmetro, o que poderia explicar o Mendanha ser contemporâneo ao Morro de São João. As assinaturas isotópicas obtidas para as intrusões não se associam à assinatura isotópica de Trindade e, caso o modelo de plumas mantélicas seja o correto, a pluma que teria maior semelhança de assinatura isotópica é a pluma de Tristão da Cunha.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A intrusão alcalina do Marapicu é uma intrusão localizada no maciço Marapicu-Gericinó-Mendanha situado na região metropolitana do Rio de Janeiro. Este maciço é formado por dois corpos alcalinos: Marapicu e Mendanha que fazem parte do lineamento magmático Poços de Caldas-Cabo Frio. Este lineamento inclui dezenas de corpos ígneos alcalinos de idade Cretácea com uma direção preferencial WNW-ESE. Os litotipos mais abundantes do Maciço Marapicu são representados por nefelina sienitos e sienitos de caráter plutônico, além de, fonolitos caracterizados por intrusões rasas geralmente em forma de diques. Além desses litotipos foram amostradas duas rochas com características químicas de magma parental (lamprófiro e fonolito tefrítico), porém, essas duas amostras não apresentam relação genética com as demais. Também foi amostrado um nefelina sienito que possui sodalita azul como feldspatóide, sendo assim, chamado de nefelina sodalita sienito. Entre os fonolitos coletados para esse trabalho, uma amostra apresenta granada melanita em sua assembleia mineralógica, e esta foi então denominada melanita fonolito. Quimicamente as rochas do Marapicu formam uma série alcalina predominantemente insaturada em sílica, miaskítica e metaluminosa. Dentro desta série se observam duas suítes sendo uma potássica (predominante) e outra sódica. A evolução química do corpo se deu por processo de cristalização fracionada com ou sem assimilação de crosta continental provavelmente dentro de uma fonte mantélica enriquecida. Duas idades de cristalização foram obtidas para o Maciço do Marapicu sendo uma idade 40Ar/39Ar de 80,46 0,58 Ma em hornblenda, e uma idade U-Pb em zircão bastante concordante de 78,0 2,1 Ma. Os dados apresentados aqui em conjunto com dados da literatura apontam para dois modelos geodinâmicos de geração dos corpos alcalinos do sudeste brasileiro, um considera a existência de uma pluma mantélica gerada na astenosfera, o outro tem por base a hipótese de flexura crustal e considera que a carga de sedimentos depositados na plataforma continental exerceria esforços que provocariam fraturas profundas permitindo a ascenção desses magmas. O presente trabalho vem para contribuir no entendimento do alojamento dos corpos alcalinos do sudeste brasileiro através do estudo especifico do Maciço Marapicu em conjunto com dados da literatura

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mid-ocean ridge basalts (MORBs) from East Pacific Rise (EPR) 13 degrees N are analysed for major and trace elements, both of which show a continuous evolving trend. Positive MgO-Al2O3 and negative MgO-Sc relationships manifest the cotectic crystallization of plagioclase and olivine, which exist with the presence of plagioclase and olivine phenocrysts and the absence of clinopyroxene phenocrysts. However, the fractionation of clinopyroxene is proven by the positive correlation of MgO and CaO. Thus, MORB samples are believed to show a "clinopyroxene paradox". The highest magnesium-bearing MORB sample E13-3B (MgO = 9.52%) is modelled for isobaric crystallization with COMAGMAT at different pressures. Observed CaO/Al2O3 ratios can be derived from E13-3B only by fractional crystallization at pressure > 4 +/- 1 kbar, which necessitates clinopyroxene crystallization and is not consistent with cotectic crystallization of olivine plus plagioclase in the magma chamber (at pressure similar to 1 kbar). The initial compositions of the melt inclusions, which could represent potential parental magmas, are reconstructed by correcting for post-entrapment crystallization (PEC). The simulated crystallization of initial melt inclusions also produce observed CaO/Al2O3 ratios only at > 4 +/- 1 kbar, in which clinopyroxene takes part in crystallization. It is suggested that MORB magmas have experienced clinopyroxene fractionation in the lower crust, in and below the Moho transition zone. The MORB magmas have experienced transition from clinopyroxene+plagioclase+olivine crystallization at > 4 +/- 1 kbar to mainly olivine+plagioclase crystallization at < 1 kbar, which contributes to the explanation of the "clinopyroxene paradox".