901 resultados para Silica gel surface coated with titanium(IV) oxide
Resumo:
Hydrogenated amorphous carbon (a-C:H) films were grown on a poly(lactic acid) (PLA) substrate by means of a radiofrequency plasma-enhanced chemical vapour deposition (rf-PECVD) technique with different deposition times (5, 20 and 40 min). The main goal of this treatment was to increase the barrier properties of PLA, maintaining its original transparency and colour as well as controlling interactions with food simulants for packaging applications. Morphological, chemical, and mechanical properties of PLA/a-C:H systems were evaluated while permeability and overall migration tests were performed in order to determine the effect of the plasma treatment on the gas-barrier properties of PLA films and their application in food packaging. Morphological results suggested a good adhesion of the deposited layers onto the polymer surface and the samples treated for 5 and 20 min only slightly darkened the PLA film. X-ray photoelectron spectroscopy revealed that the structural properties of the carbon layer deposited onto the PLA film depend on the exposure time. PLA/a-C:H system treated for 5 min showed the highest barrier properties, while none of the studied samples exceeded the migration limit established by the current legislation, suggesting the suitability of these materials in packaging applications.
Resumo:
Silica-gel supported binam-derived prolinamides are efficient organocatalysts for the direct intramolecular and intermolecular aldol reaction under solvent-free conditions using conventional magnetic stirring. These organocatalysts in combination with benzoic acid showed similar results to those obtained under similar homogeneous reaction conditions using an organocatalyst of related structure. For the intermolecular process, the aldol products were obtained at room temperature and using only 2 equiv of the ketone with high yields, regio-, diastereo- and enantioselectivities. Under these reaction conditions, also the cross aldol reaction between aldehydes is possible. The recovered catalyst can be reused up to nine times providing similar results. More interestingly, these heterogeneous organocatalysts can be used in the intramolecular aldol reaction allowing the synthesis of the Wieland–Miescher and ketone analogues with up to 92% ee, with its reused being possible up to five times without detrimental on the obtained results.
Resumo:
Resorcinol-Formaldehyde xerogels are organic polymers that can be easily tailored to have specific properties. These materials are composed of carbon, hydrogen and oxygen, and have a surface that is very rich in oxygen functionalities, and is therefore very hydrophilic. Their most interesting feature is that they may have the same chemical composition but a different porous texture. Consequently, the influence of porous characteristics, such as pore volume, surface area or pore size can be easily assessed. In this work, a commonly used desiccant, silica gel, is compared with organic xerogels to determine their rate and capacity of water adsorption, and to evaluate the role of surface chemistry versus porous texture. It was found that organic xerogels showed a higher rate of moisture adsorption than silica gel. Pore structure also seems to play an important role in water adsorption capacity. The OX-10 sample, whose porosity was mainly composed of micro-mesoporosity displayed a water adsorption capacity two times greater than that of the silica gel, and three times higher than that of the totally macroporous xerogel OX-2100. The presence of feeder pores (mesopores) that facilitate the access to the hydrophilic surface was observed to be the key factor for a good desiccant behaviour. Neither the total pore volume nor the high surface area (i.e. high microporosity) of the desiccant sample, is as important as the mesopore structure.
Resumo:
In order to inhibit the photocatalytic degradation of organic material supports induced by small titania (TiO2) nanoparticles, highly photocatalytically active, commercially available P25-TiO2 nanoparticles were first modified with a thin layer of (3-aminopropyl) triethoxysilane (APTES), which were then deposited and fixed onto the surface of paper samples via a simple, dip-coating process in water at room temperature. The resultant APTES-modified P25 TiO2 nanoparticle-coated paper samples exhibit much greater stability to UV-illumination than uncoated blank reference paper. Very little, or no, photo-degradation in terms of brightness and whiteness, respectively, of the P25-TiO2-nanoparticle-treated paper is observed. There are many other potential applications for this Green Chemistry approach to protect cellulosic fibres from UV-bleaching in sunlight and to protect their whiteness and maintain their brightness. © 2014 Elsevier Ltd.
Resumo:
Fiber optic sensors are fabricated for detecting static magnetic fields. The sensors consist of a UV inscribed long period grating with two 50 micron long microslots. The microslots are fabricated using the femtosecond laser based inscribe and etch technique. The microslots and the fiber surface are coated with a magnetostrictive material Terfenol-D. A spectral sensitivity of 1.15 pm/mT was measured in transmission with a working resolution of ±0.2 mT for a static magnetic field strength below 10 mT. These devices also present a different response when the spatial orientation of the fiber was adjusted relative to the magnetic field lines.
Resumo:
This study investigated the influence of bioactive materials on the dentin surface whitened. MATERIAL AND METHODS: Three bovine teeth were shaped into three dentin wafers. Each wafer was then sectioned, into six dentin slices. One slice from each tooth was distributed into one of 6 groups: 1.CG = control group (distilled water); 2.WT = whitening treatment; 3.WT + MI Paste Plus, applied once a day; 4.WT + Relief ACP30, applied once a day for 30 mintes; 5.WT + Relief ACP60, applied once a day for 60 minutes; 6.WT + Biosilicate®, applied once a week. All groups were treated over 14 days. RESULTS: CG presented all dentinal tubules occluded by smear layer; WT group was observed all dentinal tubules opened. In the groups 3, 4 and 6, tubules were occluded. Group 5, dentinal tubules were completely occluded by mineral deposits. CONCLUSION: The use of bioactive materials immediately after whitening treatment can reduce or even avoid the demineralization effect of whitening and avoid exposing dentinal tubules.
Resumo:
Gaseous N losses from soil are considerable, resulting mostly from ammonia volatilization linked to agricultural activities such as pasture fertilization. The use of simple and accessible measurement methods of such losses is fundamental in the evaluation of the N cycle in agricultural systems. The purpose of this study was to evaluate quantification methods of NH3 volatilization from fertilized surface soil with urea, with minimal influence on the volatilization processes. The greenhouse experiment was arranged in a completely randomized design with 13 treatments and five replications, with the following treatments: (1) Polyurethane foam (density 20 kg m-3) with phosphoric acid solution absorber (foam absorber), installed 1, 5, 10 and 20 cm above the soil surface; (2) Paper filter with sulfuric acid solution absorber (paper absorber, 1, 5, 10 and 20 cm above the soil surface); (3) Sulfuric acid solution absorber (1, 5 and 10 cm above the soil surface); (4) Semi-open static collector; (5) 15N balance (control). The foam absorber placed 1 cm above the soil surface estimated the real daily rate of loss and accumulated loss of NH3N and proved efficient in capturing NH3 volatized from urea-treated soil. The estimates based on acid absorbers 1, 5 and 10 cm above the soil surface and paper absorbers 1 and 5 cm above the soil surface were only realistic for accumulated N-NH3 losses. Foam absorbers can be indicated to quantify accumulated and daily rates of NH3 volatilization losses similarly to an open static chamber, making calibration equations or correction factors unnecessary.
Resumo:
Magnetic nanoparticles (NP) of magnetite (Fe(3)O(4)) coated with oleic acid (OA) and dodecanoic acid (DA) were synthesized and investigated through transmission electron microscopy (TEM), magnetization M, and ac magnetic susceptibility measurements. The OA coated samples were produced with different magnetic concentrations (78%, 76%, and 65%) and the DA sample with 63% of Fe(3)O(4). Images from TEM indicate that the NP have a nearly spherical geometry and mean diameter similar to 5.5 nm. Magnetization measurements, performed in zero-field cooled (ZFC) and field cooled processes under different external magnetic fields H, exhibited a maximum at a given temperature T(B) in the ZFC curves, which depends on the NP coating (OA or DA), magnetite concentration, and H. The temperature T(B) decreases monotonically with increasing H and, for a given H, the increase in the magnetite concentration results in an increase in T(B). The observed behavior is related to the dipolar interaction between NP, which seems to be an important mechanism in all samples studied. This is supported by the results of the ac magnetic susceptibility chi(ac) measurements, where the temperature in which chi' peaks for different frequencies follows the Vogel-Fulcher model, a feature commonly found in systems with dipolar interactions. Curves of H versus T(B)/T(B) (H=0) for samples with different coatings and magnetite concentrations collapse into a universal curve, indicating that the qualitative magnetic behavior of the samples may be described by the NP themselves, instead of the coating or the strength of the dipolar interaction. Below T(B), M versus H curves show a coercive field (H(C)) that increases monotonically with decreasing temperature. The saturation magnetization (M(S)) follows the Bloch's law and values of M(S) at room temperature as high as 78 emu/g were estimated, a result corresponding to similar to 80% of the bulk value. The overlap of M/M(S) versus H/T curves for a given sample and the low H(C) at high temperatures suggest superparamagnetic behavior in all samples studied. The overlap of M/M(S) versus H curves at constant temperature for different samples indicates that the NP magnetization behavior is preserved, independently of the coating and magnetite concentration. (C) 2010 American Institute of Physics. [doi: 10.1063/1.3311611]
Resumo:
The electrocatalytic reduction of hydrogen peroxide on a glassy carbon (GC) electrode modified with a ruthenium oxide hexacyanoferrate (RuOHCF) was investigated using rotating disc electrode (RDE) voltammetry aiming to improve the performance of the sensor for hydrogen peroxide detection. The influence of parameters such as rotation speed, film thickness and hydrogen peroxide concentration indicated that the rate of the cross-chemical reaction between Ru(II) centres immobilized into the film and hydrogen peroxide controls the overall process. The kinetic regime could be classified as LSk mechanism, according to the diagnostic table proposed by Albery and Hillman, and the kinetic constant of the mediated process was found to be 706 mol(-1) cm(3) s(-1). In the LSk case the reaction layer is located at a finite layer close to the modifier layer/solution interface
Resumo:
The uptake of ascorbate by neuroblastoma cells using a ruthenium oxide hexacyanoferrate (RuOHCF)-modified carbon fiber disc (CFD) microelectrode (r = 14.5 mu m) was investigated. By use of the proposed electrochemical sensor the amperometric determination of ascorbate was performed at 0.0 V in minimum essential medium (MEM, pH = 7.2) with a limit of detection of 25 mu mol L(-1). Under the optimum experimental conditions, no interference from MEM constituents and reduced glutathione (used to prevent the oxidation of ascorbate during the experiments) was noticed. The stability of the RuOHCF-modified electrode response was studied by measuring the sensitivity over an extended period of time (120 h), a decrease of around 10% being noticed at the end of the experiment. The rate of ascorbate uptake by control human neuroblastoma SH-SY5Y cells, and cells transfected with wild-type Cu,Zn-superoxide dismutase (SOD WT) or with a mutant typical of familial amyotrophic lateral sclerosis (SOD G93A), was in agreement with the level of oxidative stress in these cells. The usefulness of the RuOHCF-modified microelectrode for in vivo monitoring of ascorbate inside neuroblastoma cells was also demonstrated.
Resumo:
Due to rain events historical monuments exposed to the atmosphere are frequently submitted to wet and dry cycles. During drying periods wetness is maintained in some confined regions and the corrosion product layer, generally denominated patinas, builds up and gets thicker. The aim of this study is to use electrochemical impedance spectroscopy (EIS) to investigate the electrochemical behaviour of pure copper coated with two artificial patina layers and submitted either to continuous or to intermittent immersion tests, this latter aiming to simulate wet and dry cycles. The experiments were performed in 0.1 mol dm(-3) NaCl solution and in artificial rainwater containing the most significant pollutants of the city of Sao Paulo. The results of the continuous immersion tests in the NaCl solution have shown that the coated samples behave like a porous electrode with finite pore length. On the other hand, in the intermittent tests a porous electrode response with semi-infinite pore length can be developed. The results were interpreted based on the model of de Levie and a critical comparison with previous interpretations reported in the literature for similar systems is presented. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Superparamagnetic iron oxide nanoparticles (SPIONs) are applied in stem cell labeling because of their high magnetic susceptibility as compared with ordinary paramagnetic species, their low toxicity, and their ease of magnetic manipulation. The present work is the study of CD133(+) stem cell labeling by SPIONs coupled to a specific antibody (AC133), resulting in the antigenic labeling of the CD133+ stem cell, and a method was developed for the quantification of the SPION content per cell, necessary for molecular imaging optimization. Flow cytometry analysis established the efficiency of the selection process and helped determine that the CD133 cells selected by chromatographic affinity express the transmembrane glycoprotein CD133. The presence of antibodies coupled to the SPION, expressed in the cell membrane, was observed by transmission electron microscopy. Quantification of the SPION concentration in the marked cells using the ferromagnetic resonance technique resulted in a value of 1.70 x 10 (13) mol iron (9.5 pg) or 7.0 x 10 (6) nanoparticles per cell ( the measurement was carried out in a volume of 2 mu L containing about 6.16 x 10 5 pg iron, equivalent to 4.5 x 10 (11) SPIONs). (c) 2008 Elsevier Inc. All rights reserved.
Resumo:
I Vasorelaxant properties of three nitric oxide (NO) donor drugs (glyceryl trinitrate, sodium nitroprusside and spermine NONOate) in mouse aorta (phenylephrine pre-contracted) were compared with those of endothelium-derived NO (generated with acetylcholine), NO free radical (NO; NO gas solution) and nitroxyl ion (NO-; from Angeli's salt). 2 The soluble guanylate cyclase inhibitor, ODQ (1H-(1,2,4-)oxadiazolo(4,3-a)-quinoxalin-1-one; 0.3, 1 and 10 muM), concentration-dependently inhibited responses to all agents. 10 muM ODQ abolished responses to acetylcholine and glyceryl trinitrate, almost abolished responses to sodium nitroprusside but produced parallel shifts (to a higher concentration range; no depression in maxima) in the concentration-response curves for NO gas solution, Angeli's salt and spermine NONOate. 3 The NO scavengers, carboxy-PTIO, (2-(4-carboxyphenyl)-4,4,5,5-tetramethyl-indazoline-1-oxyl-3-oxide; 100 muM) and hydroxocobalamin (100 muM), both inhibited responses to NO gas solution and to the three NO donor drugs, but not Angeli's salt. Hydroxocobalamin, but not carboxy-PTIO, also inhibited responses to acetylcholine. 4 The NO- inhibitor, L-cysteine (3 mm), inhibited responses to Angeli's salt, acetylcholine and the three NO donor drugs, but not NO gas solution. 5 The data suggest that, in mouse aorta, responses to all three NO donors involve (i) activation of soluble guanylate cyclase, but to differing degrees and (ii) generation of both NO and NO-. Glyceryl trinitrate and sodium nitroprusside, which generate NO following tissue bioactivation, have profiles resembling the profile of endothelium-derived NO more than that of exogenous NO. Spermine NONOate, which generates NO spontaneously outside the tissue, was the drug that most closely resembled (but was not identical to) exogenous NO.
Resumo:
The strawberry is as non-climacteric fruit, but has a high post-harvest respiration rate, which leads to a rapid deterioration at room temperature. This study aimed to evaluate the application of biodegradable coating on postharvest conservation of organic strawberries, cv. Camarosa, packed in plastic hinged boxes and stored at 10ºC. The treatments consisted of: a) control; b) 2% cassava starch; c) 1% chitosan; and d) 2% cassava starch + 1% chitosan. Physical and chemical characteristics of fruits were evaluated at 3, 6 and 9 days of storage, and microbiological and sensory analyses were carried out at the end of the storage period. The treatments influenced positively the post-harvest quality of organic strawberries. The coating cassava starch + chitosan provided the best results, with less than 6% of loss in fruit mass, lower counts of yeast and psychrophilic microorganisms and the best appearance according to the sensory analysis.
Resumo:
Flooded rice cultivation promotes anaerobic conditions, favoring the formation of short chain organic acids such as acetic acid, which may be toxic to the crop. The objective of this study was to evaluate the effect of acetic acid on rice seeds coated with rice husk ash. The experiment was arranged in a 2 x 5 x 5 factorial randomized design, with two cultivars (IRGA 424 and BRS Querência), five doses of coating material (0, 2, 3,4 e 5 g kg-1 seed) and five concentrations of acetic acid (0, 3, 6, 9 and 12 mM), with 4 replications, totaling 50 treatments. The variables first count of germination, germination, shoot and root length, dry weight of shoots and roots were recorded. The results showed that coating rice seeds with rice husk ash up to 5 g kg-1 seed does not influence the performance of rice seeds of cultivars IRGA 424 and BRS Querência when exposed to concentrations of 12 mM acetic acid. The presence of acetic acid in the substrates used for seed germination reduced the vigor and viability of seeds of cultivars IRGA 424 and BRS Querência, as well as seedling development, affecting mainly the roots of BRS Querência.