954 resultados para Shallow-water carbonates
Resumo:
The effects of increasing atmospheric CO(2) on ocean ecosystems are a major environmental concern, as rapid shoaling of the carbonate saturation horizon is exposing vast areas of marine sediments to corrosive waters worldwide. Natural CO(2) gradients off Vulcano, Italy, have revealed profound ecosystem changes along rocky shore habitats as carbonate saturation levels decrease, but no investigations have yet been made of the sedimentary habitat. Here, we sampled the upper 2 cm of volcanic sand in three zones, ambient (median pCO(2) 419 µatm, minimum Omega (arag) 3.77), moderately CO(2)-enriched (median pCO(2) 592 µatm, minimum Omega (arag) 2.96), and highly CO(2)-enriched (median pCO(2) 1611 µatm, minimum Omega (arag) 0.35). We tested the hypothesis that increasing levels of seawater pCO(2) would cause significant shifts in sediment bacterial community composition, as shown recently in epilithic biofilms at the study site. In this study, 454 pyrosequencing of the V1 to V3 region of the 16S rRNA gene revealed a shift in community composition with increasing pCO(2). The relative abundances of most of the dominant genera were unaffected by the pCO(2) gradient, although there were significant differences for some 5 % of the genera present (viz. Georgenia, Lutibacter, Photobacterium, Acinetobacter, and Paenibacillus), and Shannon Diversity was greatest in sediments subject to long-term acidification (>100 years). Overall, this supports the view that globally increased ocean pCO(2) will be associated with changes in sediment bacterial community composition but that most of these organisms are resilient. However, further work is required to assess whether these results apply to other types of coastal sediments and whether the changes in relative abundance of bacterial taxa that we observed can significantly alter the biogeochemical functions of marine sediments.
Resumo:
Information on the pivot point of a turning ship is collected, taking into account practical notes and manuals on ship maneuvering as well as experimental data and simulated results which all together reveal a consistent behavior when varying water depth or some ship particulars. Results from the studies already carried out on the Riverine Support Patrol Vessel (RSPV) of the Colombian Navy are included in this one, in order to estimate the pivot point’s position and to contrast those results with theory and available empirical observations. Linear manoeuvrability theory is tested and its results show poor approximation with respect to the kinematic equations. As to the depth variation effect, by means of fullscale experiments it is confirmed that the pivot point’s position, when going to shallow water, always varies in the same way, proving to be coherent with the available information on this phenomenon.
Resumo:
Includes abstract.
Resumo:
Includes abstract.
Resumo:
"February 1988."
Resumo:
"June 1987."
Resumo:
Mode of access: Internet.