977 resultados para Shallow seismic reflection


Relevância:

80.00% 80.00%

Publicador:

Resumo:

The eleventh research cruise of Japanese Geodynamics Project in the West Pacific was carried out by the R/V Tokaidaigaku-maru II in August, 1974. During this cruise, in which the authors participated, many traverses of echo sounding and seismic reflection profiling and frequent sampling of bottom sediments were undertaken.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

"July 1979."

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The Seattle Fault is an active east-west trending reverse fault zone that intersects both Seattle and Bellevue, two highly populated cities in Washington. Rupture along strands of the fault poses a serious threat to infrastructure and thousands of people in the region. Precise locations of fault strands are still poorly constrained in Bellevue due to blind thrusting, urban development, and/or erosion. Seismic reflection and aeromagnetic surveys have shed light on structural geometries of the fault zone in bedrock. However, the fault displaces both bedrock and unconsolidated Quaternary deposits, and seismic data are poor indicators of the locations of fault strands within the unconsolidated strata. Fortunately, evidence of past fault strand ruptures may also be recorded indirectly by fluvial processes and should also be observable in the subsurface. I analyzed hillslope and river geomorphology using LiDAR data and ArcGIS to locate surface fault traces and then compare/correlate these findings to subsurface offsets identified using borehole data. Geotechnical borings were used to locate one fault offset and provide input to a cross section of the fault constructed using Rockworks software. Knickpoints, which may correlate to fault rupture, were found upstream of this newly identified fault offset as well as upstream of a previously known fault segment.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The discovery of the Woodleigh impact structure, first identified by R. P. lasky, bears a number of parallels with that of the Chlcxulub impact structure of K-T boundary age, underpinning complications inherent in the study of buried impact structures by geophysical techniques and drilling. Questions raised in connection with the diameter of the Woodleigh impact structure reflect uncertainties in criteria used to define original crater sizes in eroded and buried impact structures as well as limits on the geological controls at Woodleigh. The truncation of the regional Ajona - Wandagee gravity ridges by the outer aureole of the Woodleigh structure, a superposed arcuate magnetic anomaly along the eastern part of the structure, seismic-reflection data indicating a central > 37 km-diameter dome, correlation of fault patterns between Woodleigh and less-deeply eroded impact structures (Ries crater, Chesapeake Bay), and morphometric estimates all indicate a final diameter of 120 km. At Woodleigh, pre-hydrothermal shock-induced melting and diaplectic transformations are heavily masked by pervasive alteration of the shocked gneisses to montmorillonite-dominated clays, accounting for the high MgO and low K2O of cryptocrystalline components. The possible contamination of sub-crater levels of the Woodlelgh impact structure by meteoritic components, suggested by high Ni, Co, Cr, Ni/ Co and Ni/Cr ratios, requires further siderophile element analyses of vein materials. Although stratigraphic age constraints on the impact event are broad (post-Middle Devonian to pre-Early Jurassic) high-temperature (200-250 degrees C) pervasive hydrothermal activity dated by K-Ar isotopes of illite - smectite indicates an age of 359 +/- 4 Ma. To date neither Late Devonian crater fill, nor impact ejecta fallout units have been identified, although metallic meteoritic ablation spherules of a similar age have been found in the Conning Basin.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Systems of incised valleys have been studied in different continental shelves, including the Brazilian continental margin. The interest to characterize this feature is given by the information that it can provide variations on sea level, as well as the ability to host economically significant quantities of hydrocarbons in reservoirs located in deposits filling of the incised valleys. This thesis has the overall objective to characterize the morphology and sedimentary cover of the incised valley Apodi-Mossoró, located in the Northern Continental shelf of Rio Grande do Norte state, adjacent to Areia Branca city. The methodology included the integration of satellite imagery, bathymetric data, sedimentological data, shallow seismic, and the identification of foraminifera. The results indicate that the ApodiMossró incised valley is currently formed by two channels, shallow channel and deep channel, which have distinct morphological and sedimentological characteristics. The deep channel has connection with one of the heads of the Apodi Canyon, located in the slope area. The acquisition, processing and interpretation of shallow seismic data allowed the recognition of the depositional surface, erosional surface, discordance, and sismofaceis. The erosional surface mapped from shallow seismic sections is possibly a indicative of an ancient surface of valley incision, where it would probably be associated with the limit Pleistocene/Holocene. Different sismofaceis were identified and reflect the rise in sea level with standards sometimes agradacional, sometimes progradational. The thickness of sediments on this surface was estimated at a maximum of 22m thick in the central portion of the incised valley. Statistically, there are differences between the adjacent continental shelf and channels, and between these channels, for the content of calcium carbonate, organic matter, sand and mud perceptual, except for the gravel grain size. The analysis of living and dead foraminifera showed the presence of fifty species distributed in regards to morphology, depth and type of sediment. Four type of seismic echocharacteres were identified and mapped, as well as their bedforms, indicating different sedimentary processes along the incised valley. The integration of results suggests an activation of the Apodi-Mossoró incised valley in the Late Pleistocene.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Paleotopographic models of the West Antarctic margin, which are essential for robust simulations of paleoclimate scenarios, lack information on sediment thickness and geodynamic conditions, resulting in large uncertainties. A new total sediment thickness grid spanning the Ross Sea-Amundsen Sea-Bellingshausen Sea basins is presented and is based on all the available seismic reflection, borehole, and gravity modeling data offshore West Antarctica. This grid was combined with NGDC's global 5 arc minute grid of ocean sediment thickness (Whittaker et al., 2013, doi:10.1002/ggge.20181) and extends the NGDC grid further to the south. Sediment thickness along the West Antarctic margin tends to be 3-4 km larger than previously assumed. The sediment volume in the Bellingshausen, Amundsen, and Ross Sea basins amounts to 3.61, 3.58, and 2.78 million km³, respectively. The residual basement topography of the South Pacific has been revised and the new data show an asymmetric trend over the Pacific-Antarctic Ridge. Values are anomalously high south of the spreading ridge and in the Ross Sea area, where the topography seems to be affected by persistent mantle processes. In contrast, the basement topography offshore Marie Byrd Land cannot be attributed to dynamic topography, but rather to crustal thickening due to intraplate volcanism. Present-day dynamic topography models disagree with the presented revised basement topography of the South Pacific, rendering paleotopographic reconstructions with such a limited dataset still fairly uncertain.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The deep sea sedimentary record is an archive of the pre-glacial to glacial development of Antarctica and changes in climate, tectonics and ocean circulation. Identification of the pre-glacial, transitional and full glacial components in the sedimentary record is necessary for ice sheet reconstruction and to build circum-Antarctic sediment thickness grids for past topography and bathymetry reconstructions, which constrain paleoclimate models. A ~3300 km long Weddell Sea to Scotia Sea transect consisting of multichannel seismic reflection data from various organisations, were used to interpret new horizons to define the initial basin-wide seismostratigraphy and to identify the pre-glacial to glacial components. We mapped seven main units of which three are in the inferred Cretaceous-Paleocene pre-glacial regime, one in the Eocene-Oligocene transitional regime and three units in the Miocene-Pleistocene full glacial climate regime. Sparse borehole data from ODP leg 113 and SHALDRIL constrain the ages of the upper three units. Compiled seafloor spreading magnetic anomalies constrain the basement ages and the hypothetical age model. In many cases, the new horizons and stratigraphy contradict the interpretations in local studies. Each seismic sedimentary unit and its associated base horizon are continuous and traceable for the entire transect length, but reflect a lateral change in age whilst representing the same deposition process. The up to 1240 m thick pre-glacial seismic units form a mound in the central Weddell Sea basin and, in conjunction with the eroded flank geometry, support the interpretation of a Cretaceous proto-Weddell Gyre. The base reflector of the transitional seismic unit, which marks the initial ice sheet advances to the outer shelf, has a lateral model age of 26.6-15.5 Ma from southeast to northwest. The Pliocene-Pleistocene glacial deposits reveals lower sedimentations rates, indicating a reduced sediment supply. Sedimentation rates for the pre-glacial, transitional and full glacial components are highest around the Antarctic Peninsula, indicating higher erosion and sediment supply of a younger basement. We interpret an Eocene East Antarctic Ice Sheet expansion, Oligocene grounding of the West Antarctic Ice Sheet and Early Miocene grounding of the Antarctic Peninsula Ice Sheet.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Através do processamento de dados sísmicos convertem-se registos de campo em secções sísmicas com significado geológico, que revelam informações e ajudam a delinear as camadas geológicas do subsolo e identificar estruturas soterradas. Portanto, a interpretação dos dados sísmicos só é boa se o processamento também o for. Este trabalho é resultado de um estágio curricular na empresa de prospecção geofísica GeoSurveys, que consistiu principalmente em processar 18 linhas de dados de sísmica de reflexão multicanal de alta resolução adquiridas na ilha de Pulau Tekong em Singapura, que têm como finalidade investigação do solo da baia desta mesma ilha. Estes dados foram cedidos à GeoSurveys para fins académicos, caso em que se inclui esta dissertação. Para atingir os objectivos propostos que consistiam em avaliar o impacto das condições de operação na qualidade do sinal sísmico e interpretação das linhas, fez-se o processamento das linhas utilizando um fluxo processamento padrão utilizado na empresa, com recurso ao software Radex Pro. Este fluxo de processamento tem como mais-valia o método de correcções estáticas, o UHRS trim statics, além das técnicas habituais utilizadas para melhorar a resolução das secções sísmicas como é o caso da desconvolução, a atenuação de ruído através do stacking, correcções de NMO, e migração, entre outras técnicas. A interpretação das linhas sísmicas processadas foi feita no software Kingdom Suite (IHS), através da distinção da configuração interna dos reflectores em cada secção sísmica, estabelecendo deste modo as principais unidades sismo-estratigráficas e identificando as zonas de interface que delimitam os horizontes principais. Foi feito ainda um estudo geológico sumário da área de pesquisa e da evolução geodinâmica da região.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The deep seismic reflection profile Western Approaches Margin (WAM) cuts across the Goban Spur continental margin, located southwest of Ireland. This non-volcanic margin is characterized by a few tilted blocks parallel to the margin. A volcanic sill has been emplaced on the westernmost tilted block. The shape of the eastern part of this sill is known from seismic data, but neither seismic nor gravity data allow a precise determination of the extent and shape of the volcanic body at depth. Forward modelling and inversion of magnetic data constrain the shape of this volcanic sill and the location of the ocean-continent transition. The volcanic body thickens towards the ocean, and seems to be in direct contact with the oceanic crust. In the contact zone, the volcanic body and the oceanic magnetic layer display approximately the same thickness. The oceanic magnetic layer is anomalously thick immediately west of the volcanic body, and gradually thins to reach more typical values 40 km further to the west. The volcanic sill would therefore represent the very first formation of oceanic crust, just before or at the continental break-up. The ocean-continent transition is limited to a zone 15 km wide. The continental magnetic layer seems to thin gradually oceanwards, as does the continental crust, but no simple relation is observed between their respective thinnings.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In the Hydrocarbon exploration activities, the great enigma is the location of the deposits. Great efforts are undertaken in an attempt to better identify them, locate them and at the same time, enhance cost-effectiveness relationship of extraction of oil. Seismic methods are the most widely used because they are indirect, i.e., probing the subsurface layers without invading them. Seismogram is the representation of the Earth s interior and its structures through a conveniently disposed arrangement of the data obtained by seismic reflection. A major problem in this representation is the intensity and variety of present noise in the seismogram, as the surface bearing noise that contaminates the relevant signals, and may mask the desired information, brought by waves scattered in deeper regions of the geological layers. It was developed a tool to suppress these noises based on wavelet transform 1D and 2D. The Java language program makes the separation of seismic images considering the directions (horizontal, vertical, mixed or local) and bands of wavelengths that form these images, using the Daubechies Wavelets, Auto-resolution and Tensor Product of wavelet bases. Besides, it was developed the option in a single image, using the tensor product of two-dimensional wavelets or one-wavelet tensor product by identities. In the latter case, we have the wavelet decomposition in a two dimensional signal in a single direction. This decomposition has allowed to lengthen a certain direction the two-dimensional Wavelets, correcting the effects of scales by applying Auto-resolutions. In other words, it has been improved the treatment of a seismic image using 1D wavelet and 2D wavelet at different stages of Auto-resolution. It was also implemented improvements in the display of images associated with breakdowns in each Auto-resolution, facilitating the choices of images with the signals of interest for image reconstruction without noise. The program was tested with real data and the results were good