934 resultados para Sewage disposal in the ground.
Resumo:
Arsenic pollution is a major threat in eastern India and Bangladesh. In Kolkata, sewage-fed fishery is a very popular culture. Wastewater of Kolkata city is diluted with freshwater and used in sewage-fed fish ponds. In the present study the arsenic concentration in the surface wastewater from forty-four different places of southern, eastern, western and norther parts of Kolkata was estimated. In fifteen places, the arsenic level was higher than the allowed limit (0.20 mg/l). But the arsenic level in the waters, sediment of fish culture ponds and in fish flesh of sewage-fed fisheries of Kolkata was below the maximum limit. So, till date there is no threat from arsenic pollution to the sewage-fed fisheries of Kolkata.
Resumo:
The coastal development and human activities along the Suez Gulf leading to sedimentation, degrade the quality of water, disturbing the natural structure and functions of aquatic communities. The Suez Gulf is a large semi-closed area with a 346 km long coastline on the western beach side. The prevailing physicochemical parameters in shallow intertidal waters were measured seasonally over the year. Benthic faunas in the sampling sites were studied indicating their regional distribution in relation to the impact of different environmental parameters in the intertidal region. The concentration of copper in seawater reached high level at St. IV (4.57 ug/1), which is exposed to sewage and petroleum hydrocarbons. The grain size of the sediment is a determining factor for the organic carbon concentration and the sandy substrate enhances organic matter degradation processes. A large number of oil fields are present along the western coast of the Suez Gulf, therefore, cadmium and organic matter appeared to be high. The values of pH did not vary greatly among the different sampling sites. It was high at EI-Ein, El-Sukhna and Ras-Shukeir due to the disposal of mainly acidic sewage and industrial effluents of the two stations Adabiya and Ras-Gharib respectively. The macrobenthos included 71 species embraced mainly from Mollusca (53.5% Gastropoda and 12.7% Bivalvia) and the other invertebrates included 7 groups namely, Rhizostoma, Polychaeta, Cirripedia, Amphipoda, Isopoda, Decapoda and Echinodermata. The distribution of benthos is affected by the temperature and salinity of seawater. The concentration of organic matter in seawater and in sediments in shallow waters shows high values in the central part of the Gulf of Suez.
Resumo:
A comparative study was carried out between the two biggest creeks along the Arabian Gulf coast of the United Arab Emirates to evaluate impacts of sewage and industrial effluents on their hydrochemical characteristics. Surface and bottom water samples were collected from Abu Dhabi and Dubai creeks during the period from October 1994 to September 1995. The hydrochemical parameters studied were: temperature (21.10-34.00°C), salinity (37.37-47.09%), transparency (0.50-10.0 m), pH (7.97-8.83), dissolved oxygen (1.78-13.93 mg/l) and nutrients ammonia (ND- 13.12,ug-at N/1), nitrite (ND-6.66 ,ug-at N/1), nitrate (ND- 41.18 ,ug-at N/1), phosphate (ND- 13.06 ,ug-at P/1), silicate (0.68-32.50 ,ug-at Si/1), total phosphorus (0.26- 21.48 ,ug-at P/1), and total silicon (0.95- 40.32 ,ug-at Si/1). The present study indicates clearly that seawater of Abu-Dhabi Creek was warmer (28.l2°C) than Dubai (27.56°C) resulting in a higher rate of evaporation. Owing to more evaporation, salinity levels showed higher levels at Abu Dhabi (43.33%) compared to Dubai (39.03%) seawater. The study also revealed higher secchi disc readings at Abu Dhabi Creek (4.68 m) as compared to Dubai Creek (2.60 m) suggesting more transparency at Abu Dhabi Creek. Whereas, seawater of Dubai exhibited higher levels of pH (1.03 times), and dissolved oxygen (1.05 times) than Abu Dhabi seawater due to an increase in productivity. Meantime, seawater of Dubai showed higher tendency to accumulate ammonia (8.22 times), nitrite (10.93 times), nitrate (5.85 times), phosphate (10.64 times), silicate (1.60 times), total phosphorus (3.19 times), and total silicon (1.54 times) compared to Abu Dhabi seawater due to the enrichment of seawater at Dubai with domestic sewage waters which has distinctly elevated the levels of the nutrient salts particularly in inner-most parts of the creek leading to eutrophication signs. The changes occurred in the receiving creek water of Dubai as a result of waste-water disposal that have also reflected on the atomic ratios of nit: Effect of pollution rogen: phosphorus: silicon.
Resumo:
This study has developed an improved subjective approach of classification in conjunction with Step wise DFA analysis to discriminate Chinese sturgeon signals from other targets. The results showed that all together 25 Chinese sturgeon echo-signals were detected in the spawning ground of Gezhouba Dam during the last 3 years, and the identification accuracy reached 90.9%. In Stepwise DFA, 24 out of 67 variables were applied in discrimination and identification. PCA combined with DFA was then used to ensure the significance of the 24 variables and detailed the identification pattern. The results indicated that we can discriminate Chinese sturgeon from other fish species and noise using certain descriptors such as the behaviour variables, echo characteristics and acoustic cross-section characteristics. However, identification of Chinese sturgeon from sediments is more difficult and needs a total of 24 variables. This is due to the limited knowledge about the acoustic-scattering properties of the substrate regions. Based on identified Chinese sturgeon individuals, 18 individuals were distributed in the region between the site of Gezhouba Dam and Miaozui reach, with a surface area of about 3.4 km(2). Seven individuals were distributed in the region between Miaozui and Yanshouba reach, with a surface area of about 13 km(2).
Resumo:
The thermophily, fishing season and central fishing ground of Japanese pilchard (Sardinops melanosticta) were studied by using satellite remote sensing (SRS) and other methods in Haizhou Bay and Tsushima waters during 1986-1990. A rapid prediction method of fishing ground is presented. Moreover, the results indicated that the thermophilic values of the fish stock are 11-20 degrees C and both fishing grounds are in increasing temperature process from the beginning to the end of the fishing period. The Japanese pilchards gather vigorously at the sea surface temperature of 15-17 degrees C. The water temperature is a key factor affecting the fishing season and the catch of the fishing ground. The increasing temperature process restricts the fishing season development and central fishing ground formation. The accuracy of 15 predictions made in the Haizhou Bay fishing ground is up to 91.3%, and 37 predictions made in the Tsushima, fishing ground shorten the fish detection time by 13.4% - 22% on the average.
Resumo:
Systematic studies of the changes in dissolved inorganic nitrogen (DIN) and dissolved inorganic phosphorus (DIP) and their effects on phytoplankton over the last 30 years in the Bohai Sea are presented. The amount of sewage disposal, use of fertilizer and the Huanghe River runoff were found to have a significant influence on the DIN or DIP concentrations in the Bohai Sea over the last 30 years. Moreover, the changes in DIN and DIP resulted in changes in the limiting nutrients of phytoplankton in the Bohai Sea from nitrogen in the early 1980s to nitrogen-phosphorus in the late 1980s, and then to phosphorus after the 1990s. In addition, changes in nitrogen and phosphorus had a significant effect on the phytoplankton community structure. The half saturation constant (K (s)) was used to evaluate the effect of nutrients on the phytoplankton community structure in the Bohai Sea over the last 30 years. Cell abundance percentages of dominant phytoplankton species with high K (s) values for phosphorus and low K (s) values for nitrogen have decreased since the 1980s, while those of dominant phytoplankton species with low K (s) values for phosphorus and high K (s) values for nitrogen increased during this period.
Resumo:
The objective of this study was to determine how structure, stratigraphy, and weathering influence fate and transport of contaminants (particularly U) in the ground water and geologic material at the Department of Energy (DOE) Environmental Remediation Sciences Department (ERSD) Field Research Center (FRC). Several cores were collected near four former unlined adjoining waste disposal ponds. The cores were collected, described, analyzed for U, and compared with ground water geochemistry from surrounding multilevel wells. At some locations, acidic U-contaminated ground water was found to preferentially flow in small remnant fractures weathering the surrounding shale (nitric acid extractable U [UNA] usually <50 mg kg–1) into thin (