910 resultados para Set theory.
Resumo:
Grigorij Kreidlin (Russia). A Comparative Study of Two Semantic Systems: Body Russian and Russian Phraseology. Mr. Kreidlin teaches in the Department of Theoretical and Applied Linguistics of the State University of Humanities in Moscow and worked on this project from August 1996 to July 1998. The classical approach to non-verbal and verbal oral communication is based on a traditional separation of body and mind. Linguists studied words and phrasemes, the products of mind activities, while gestures, facial expressions, postures and other forms of body language were left to anthropologists, psychologists, physiologists, and indeed to anyone but linguists. Only recently have linguists begun to turn their attention to gestures and semiotic and cognitive paradigms are now appearing that raise the question of designing an integral model for the unified description of non-verbal and verbal communicative behaviour. This project attempted to elaborate lexical and semantic fragments of such a model, producing a co-ordinated semantic description of the main Russian gestures (including gestures proper, postures and facial expressions) and their natural language analogues. The concept of emblematic gestures and gestural phrasemes and of their semantic links permitted an appropriate description of the transformation of a body as a purely physical substance into a body as a carrier of essential attributes of Russian culture - the semiotic process called the culturalisation of the human body. Here the human body embodies a system of cultural values and displays them in a text within the area of phraseology and some other important language domains. The goal of this research was to develop a theory that would account for the fundamental peculiarities of the process. The model proposed is based on the unified lexicographic representation of verbal and non-verbal units in the Dictionary of Russian Gestures, which the Mr. Kreidlin had earlier complied in collaboration with a group of his students. The Dictionary was originally oriented only towards reflecting how the lexical competence of Russian body language is represented in the Russian mind. Now a special type of phraseological zone has been designed to reflect explicitly semantic relationships between the gestures in the entries and phrasemes and to provide the necessary information for a detailed description of these. All the definitions, rules of usage and the established correlations are written in a semantic meta-language. Several classes of Russian gestural phrasemes were identified, including those phrasemes and idioms with semantic definitions close to those of the corresponding gestures, those phraseological units that have lost touch with the related gestures (although etymologically they are derived from gestures that have gone out of use), and phrasemes and idioms which have semantic traces or reflexes inherited from the meaning of the related gestures. The basic assumptions and practical considerations underlying the work were as follows. (1) To compare meanings one has to be able to state them. To state the meaning of a gesture or a phraseological expression, one needs a formal semantic meta-language of propositional character that represents the cognitive and mental aspects of the codes. (2) The semantic contrastive analysis of any semiotic codes used in person-to-person communication also requires a single semantic meta-language, i.e. a formal semantic language of description,. This language must be as linguistically and culturally independent as possible and yet must be open to interpretation through any culture and code. Another possible method of conducting comparative verbal-non-verbal semantic research is to work with different semantic meta-languages and semantic nets and to learn how to combine them, translate from one to another, etc. in order to reach a common basis for the subsequent comparison of units. (3) The practical work in defining phraseological units and organising the phraseological zone in the Dictionary of Russian Gestures unexpectedly showed that semantic links between gestures and gestural phrasemes are reflected not only in common semantic elements and syntactic structure of semantic propositions, but also in general and partial cognitive operations that are made over semantic definitions. (4) In comparative semantic analysis one should take into account different values and roles of inner form and image components in the semantic representation of non-verbal and verbal units. (5) For the most part, gestural phrasemes are direct semantic derivatives of gestures. The cognitive and formal techniques can be regarded as typological features for the future functional-semantic classification of gestural phrasemes: two phrasemes whose meaning can be obtained by the same cognitive or purely syntactic operations (or types of operations) over the meanings of the corresponding gestures, belong by definition to one and the same class. The nature of many cognitive operations has not been studied well so far, but the first steps towards its comprehension and description have been taken. The research identified 25 logically possible classes of relationships between a gesture and a gestural phraseme. The calculation is based on theoretically possible formal (set-theory) correlations between signifiers and signified of the non-verbal and verbal units. However, in order to examine which of them are realised in practice a complete semantic and lexicographic description of all (not only central) everyday emblems and gestural phrasemes is required and this unfortunately does not yet exist. Mr. Kreidlin suggests that the results of the comparative analysis of verbal and non-verbal units could also be used in other research areas such as the lexicography of emotions.
Resumo:
Several methods based on Kriging have recently been proposed for calculating a probability of failure involving costly-to-evaluate functions. A closely related problem is to estimate the set of inputs leading to a response exceeding a given threshold. Now, estimating such a level set—and not solely its volume—and quantifying uncertainties on it are not straightforward. Here we use notions from random set theory to obtain an estimate of the level set, together with a quantification of estimation uncertainty. We give explicit formulae in the Gaussian process set-up and provide a consistency result. We then illustrate how space-filling versus adaptive design strategies may sequentially reduce level set estimation uncertainty.
Resumo:
A new research project has, quite recently, been launched to clarify how different, from systems in second order number theory extending ACA 0, those in second order set theory extending NBG (as well as those in n + 3-th order number theory extending the so-called Bernays−Gödel expansion of full n + 2-order number theory etc.) are. In this article, we establish the equivalence between Δ10\bf-LFP and Δ10\bf-FP, which assert the existence of a least and of a (not necessarily least) fixed point, respectively, for positive elementary operators (or between Δn+20\bf-LFP and Δn+20\bf-FP). Our proof also shows the equivalence between ID 1 and ^ID1, both of which are defined in the standard way but with the starting theory PA replaced by ZFC (or full n + 2-th order number theory with global well-ordering).
Resumo:
Multi-objective optimization algorithms aim at finding Pareto-optimal solutions. Recovering Pareto fronts or Pareto sets from a limited number of function evaluations are challenging problems. A popular approach in the case of expensive-to-evaluate functions is to appeal to metamodels. Kriging has been shown efficient as a base for sequential multi-objective optimization, notably through infill sampling criteria balancing exploitation and exploration such as the Expected Hypervolume Improvement. Here we consider Kriging metamodels not only for selecting new points, but as a tool for estimating the whole Pareto front and quantifying how much uncertainty remains on it at any stage of Kriging-based multi-objective optimization algorithms. Our approach relies on the Gaussian process interpretation of Kriging, and bases upon conditional simulations. Using concepts from random set theory, we propose to adapt the Vorob’ev expectation and deviation to capture the variability of the set of non-dominated points. Numerical experiments illustrate the potential of the proposed workflow, and it is shown on examples how Gaussian process simulations and the estimated Vorob’ev deviation can be used to monitor the ability of Kriging-based multi-objective optimization algorithms to accurately learn the Pareto front.
Resumo:
El cálculo de relaciones binarias fue creado por De Morgan en 1860 para ser posteriormente desarrollado en gran medida por Peirce y Schröder. Tarski, Givant, Freyd y Scedrov demostraron que las álgebras relacionales son capaces de formalizar la lógica de primer orden, la lógica de orden superior así como la teoría de conjuntos. A partir de los resultados matemáticos de Tarski y Freyd, esta tesis desarrolla semánticas denotacionales y operacionales para la programación lógica con restricciones usando el álgebra relacional como base. La idea principal es la utilización del concepto de semántica ejecutable, semánticas cuya característica principal es el que la ejecución es posible utilizando el razonamiento estándar del universo semántico, este caso, razonamiento ecuacional. En el caso de este trabajo, se muestra que las álgebras relacionales distributivas con un operador de punto fijo capturan toda la teoría y metateoría estándar de la programación lógica con restricciones incluyendo los árboles utilizados en la búsqueda de demostraciones. La mayor parte de técnicas de optimización de programas, evaluación parcial e interpretación abstracta pueden ser llevadas a cabo utilizando las semánticas aquí presentadas. La demostración de la corrección de la implementación resulta extremadamente sencilla. En la primera parte de la tesis, un programa lógico con restricciones es traducido a un conjunto de términos relacionales. La interpretación estándar en la teoría de conjuntos de dichas relaciones coincide con la semántica estándar para CLP. Las consultas contra el programa traducido son llevadas a cabo mediante la reescritura de relaciones. Para concluir la primera parte, se demuestra la corrección y equivalencia operacional de esta nueva semántica, así como se define un algoritmo de unificación mediante la reescritura de relaciones. La segunda parte de la tesis desarrolla una semántica para la programación lógica con restricciones usando la teoría de alegorías—versión categórica del álgebra de relaciones—de Freyd. Para ello, se definen dos nuevos conceptos de Categoría Regular de Lawvere y _-Alegoría, en las cuales es posible interpretar un programa lógico. La ventaja fundamental que el enfoque categórico aporta es la definición de una máquina categórica que mejora e sistema de reescritura presentado en la primera parte. Gracias al uso de relaciones tabulares, la máquina modela la ejecución eficiente sin salir de un marco estrictamente formal. Utilizando la reescritura de diagramas, se define un algoritmo para el cálculo de pullbacks en Categorías Regulares de Lawvere. Los dominios de las tabulaciones aportan información sobre la utilización de memoria y variable libres, mientras que el estado compartido queda capturado por los diagramas. La especificación de la máquina induce la derivación formal de un juego de instrucciones eficiente. El marco categórico aporta otras importantes ventajas, como la posibilidad de incorporar tipos de datos algebraicos, funciones y otras extensiones a Prolog, a la vez que se conserva el carácter 100% declarativo de nuestra semántica. ABSTRACT The calculus of binary relations was introduced by De Morgan in 1860, to be greatly developed by Peirce and Schröder, as well as many others in the twentieth century. Using different formulations of relational structures, Tarski, Givant, Freyd, and Scedrov have shown how relation algebras can provide a variable-free way of formalizing first order logic, higher order logic and set theory, among other formal systems. Building on those mathematical results, we develop denotational and operational semantics for Constraint Logic Programming using relation algebra. The idea of executable semantics plays a fundamental role in this work, both as a philosophical and technical foundation. We call a semantics executable when program execution can be carried out using the regular theory and tools that define the semantic universe. Throughout this work, the use of pure algebraic reasoning is the basis of denotational and operational results, eliminating all the classical non-equational meta-theory associated to traditional semantics for Logic Programming. All algebraic reasoning, including execution, is performed in an algebraic way, to the point we could state that the denotational semantics of a CLP program is directly executable. Techniques like optimization, partial evaluation and abstract interpretation find a natural place in our algebraic models. Other properties, like correctness of the implementation or program transformation are easy to check, as they are carried out using instances of the general equational theory. In the first part of the work, we translate Constraint Logic Programs to binary relations in a modified version of the distributive relation algebras used by Tarski. Execution is carried out by a rewriting system. We prove adequacy and operational equivalence of the semantics. In the second part of the work, the relation algebraic approach is improved by using allegory theory, a categorical version of the algebra of relations developed by Freyd and Scedrov. The use of allegories lifts the semantics to typed relations, which capture the number of logical variables used by a predicate or program state in a declarative way. A logic program is interpreted in a _-allegory, which is in turn generated from a new notion of Regular Lawvere Category. As in the untyped case, program translation coincides with program interpretation. Thus, we develop a categorical machine directly from the semantics. The machine is based on relation composition, with a pullback calculation algorithm at its core. The algorithm is defined with the help of a notion of diagram rewriting. In this operational interpretation, types represent information about memory allocation and the execution mechanism is more efficient, thanks to the faithful representation of shared state by categorical projections. We finish the work by illustrating how the categorical semantics allows the incorporation into Prolog of constructs typical of Functional Programming, like abstract data types, and strict and lazy functions.
Resumo:
habilidades de comprensión y resolución de problemas. Tanto es así que se puede afirmar con rotundidad que no existe el método perfecto para cada una de las etapas de desarrollo y tampoco existe el modelo de ciclo de vida perfecto: cada nuevo problema que se plantea es diferente a los anteriores en algún aspecto y esto hace que técnicas que funcionaron en proyectos anteriores fracasen en los proyectos nuevos. Por ello actualmente se realiza un planteamiento integrador que pretende utilizar en cada caso las técnicas, métodos y herramientas más acordes con las características del problema planteado al ingeniero. Bajo este punto de vista se plantean nuevos problemas. En primer lugar está la selección de enfoques de desarrollo. Si no existe el mejor enfoque, ¿cómo se hace para elegir el más adecuado de entre el conjunto de los existentes? Un segundo problema estriba en la relación entre las etapas de análisis y diseño. En este sentido existen dos grandes riesgos. Por un lado, se puede hacer un análisis del problema demasiado superficial, con lo que se produce una excesiva distancia entre el análisis y el diseño que muchas veces imposibilita el paso de uno a otro. Por otro lado, se puede optar por un análisis en términos del diseño que provoca que no cumpla su objetivo de centrarse en el problema, sino que se convierte en una primera versión de la solución, lo que se conoce como diseño preliminar. Como consecuencia de lo anterior surge el dilema del análisis, que puede plantearse como sigue: para cada problema planteado hay que elegir las técnicas más adecuadas, lo que requiere que se conozcan las características del problema. Para ello, a su vez, se debe analizar el problema, eligiendo una técnica antes de conocerlo. Si la técnica utiliza términos de diseño entonces se ha precondicionado el paradigma de solución y es posible que no sea el más adecuado para resolver el problema. En último lugar están las barreras pragmáticas que frenan la expansión del uso de métodos con base formal, dificultando su aplicación en la práctica cotidiana. Teniendo en cuenta todos los problemas planteados, se requieren métodos de análisis del problema que cumplan una serie de objetivos, el primero de los cuales es la necesidad de una base formal, con el fin de evitar la ambigüedad y permitir verificar la corrección de los modelos generados. Un segundo objetivo es la independencia de diseño: se deben utilizar términos que no tengan reflejo directo en el diseño, para que permitan centrarse en las características del problema. Además los métodos deben permitir analizar problemas de cualquier tipo: algorítmicos, de soporte a la decisión o basados en el conocimiento, entre otros. En siguiente lugar están los objetivos relacionados con aspectos pragmáticos. Por un lado deben incorporar una notación textual formal pero no matemática, de forma que se facilite su validación y comprensión por personas sin conocimientos matemáticos profundos pero al mismo tiempo sea lo suficientemente rigurosa para facilitar su verificación. Por otro lado, se requiere una notación gráfica complementaria para representar los modelos, de forma que puedan ser comprendidos y validados cómodamente por parte de los clientes y usuarios. Esta tesis doctoral presenta SETCM, un método de análisis que cumple estos objetivos. Para ello se han definido todos los elementos que forman los modelos de análisis usando una terminología independiente de paradigmas de diseño y se han formalizado dichas definiciones usando los elementos fundamentales de la teoría de conjuntos: elementos, conjuntos y relaciones entre conjuntos. Por otro lado se ha definido un lenguaje formal para representar los elementos de los modelos de análisis – evitando en lo posible el uso de notaciones matemáticas – complementado con una notación gráfica que permite representar de forma visual las partes más relevantes de los modelos. El método propuesto ha sido sometido a una intensa fase de experimentación, durante la que fue aplicado a 13 casos de estudio, todos ellos proyectos reales que han concluido en productos transferidos a entidades públicas o privadas. Durante la experimentación se ha evaluado la adecuación de SETCM para el análisis de problemas de distinto tamaño y en sistemas cuyo diseño final usaba paradigmas diferentes e incluso paradigmas mixtos. También se ha evaluado su uso por analistas con distinto nivel de experiencia – noveles, intermedios o expertos – analizando en todos los casos la curva de aprendizaje, con el fin de averiguar si es fácil de aprender su uso, independientemente de si se conoce o no alguna otra técnica de análisis. Por otro lado se ha estudiado la capacidad de ampliación de modelos generados con SETCM, para comprobar si permite abordar proyectos realizados en varias fases, en los que el análisis de una fase consista en ampliar el análisis de la fase anterior. En resumidas cuentas, se ha tratado de evaluar la capacidad de integración de SETCM en una organización como la técnica de análisis preferida para el desarrollo de software. Los resultados obtenidos tras esta experimentación han sido muy positivos, habiéndose alcanzado un alto grado de cumplimiento de todos los objetivos planteados al definir el método.---ABSTRACT---Software development is an inherently complex activity, which requires specific abilities of problem comprehension and solving. It is so difficult that it can even be said that there is no perfect method for each of the development stages and that there is no perfect life cycle model: each new problem is different to the precedent ones in some respect and the techniques that worked in other problems can fail in the new ones. Given that situation, the current trend is to integrate different methods, tools and techniques, using the best suited for each situation. This trend, however, raises some new problems. The first one is the selection of development approaches. If there is no a manifestly single best approach, how does one go about choosing an approach from the array of available options? The second problem has to do with the relationship between the analysis and design phases. This relation can lead to two major risks. On one hand, the analysis could be too shallow and far away from the design, making it very difficult to perform the transition between them. On the other hand, the analysis could be expressed using design terminology, thus becoming more a kind of preliminary design than a model of the problem to be solved. In third place there is the analysis dilemma, which can be expressed as follows. The developer has to choose the most adequate techniques for each problem, and to make this decision it is necessary to know the most relevant properties of the problem. This implies that the developer has to analyse the problem, choosing an analysis method before really knowing the problem. If the chosen technique uses design terminology then the solution paradigm has been preconditioned and it is possible that, once the problem is well known, that paradigm wouldn’t be the chosen one. The last problem consists of some pragmatic barriers that limit the applicability of formal based methods, making it difficult to use them in current practice. In order to solve these problems there is a need for analysis methods that fulfil several goals. The first one is the need of a formal base, which prevents ambiguity and allows the verification of the analysis models. The second goal is design-independence: the analysis should use a terminology different from the design, to facilitate a real comprehension of the problem under study. In third place the analysis method should allow the developer to study different kinds of problems: algorithmic, decision-support, knowledge based, etc. Next there are two goals related to pragmatic aspects. Firstly, the methods should have a non mathematical but formal textual notation. This notation will allow people without deep mathematical knowledge to understand and validate the resulting models, without losing the needed rigour for verification. Secondly, the methods should have a complementary graphical notation to make more natural the understanding and validation of the relevant parts of the analysis. This Thesis proposes such a method, called SETCM. The elements conforming the analysis models have been defined using a terminology that is independent from design paradigms. Those terms have been then formalised using the main concepts of the set theory: elements, sets and correspondences between sets. In addition, a formal language has been created, which avoids the use of mathematical notations. Finally, a graphical notation has been defined, which can visually represent the most relevant elements of the models. The proposed method has been thoroughly tested during the experimentation phase. It has been used to perform the analysis of 13 actual projects, all of them resulting in transferred products. This experimentation allowed evaluating the adequacy of SETCM for the analysis of problems of varying size, whose final design used different paradigms and even mixed ones. The use of the method by people with different levels of expertise was also evaluated, along with the corresponding learning curve, in order to assess if the method is easy to learn, independently of previous knowledge on other analysis techniques. In addition, the expandability of the analysis models was evaluated, assessing if the technique was adequate for projects organised in incremental steps, in which the analysis of one step grows from the precedent models. The final goal was to assess if SETCM can be used inside an organisation as the preferred analysis method for software development. The obtained results have been very positive, as SETCM has obtained a high degree of fulfilment of the goals stated for the method.
Resumo:
Mathematical morphology addresses the problem of describing shapes in an n-dimensional space using the concepts of set theory. A series of standardized morphological operations are defined, and they are applied to the shapes to transform them using another shape called the structuring element. In an industrial environment, the process of manufacturing a piece is based on the manipulation of a primitive object via contact with a tool that transforms the object progressively to obtain the desired design. The analogy with the morphological operation of erosion is obvious. Nevertheless, few references about the relation between the morphological operations and the process of design and manufacturing can be found. The non-deterministic nature of classic mathematical morphology makes it very difficult to adapt their basic operations to the dynamics of concepts such as the ordered trajectory. A new geometric model is presented, inspired by the classic morphological paradigm, which can define objects and apply morphological operations that transform these objects. The model specializes in classic morphological operations, providing them with the determinism inherent in dynamic processes that require an order of application, as is the case for designing and manufacturing objects in professional computer-aided design and manufacturing (CAD/CAM) environments. The operators are boundary-based so that only the points in the frontier are handled. As a consequence, the process is more efficient and more suitable for use in CAD/CAM systems.
Resumo:
Infinity is not an easy concept. A number of difficulties that people cope with when dealing with problems related to infinity include its abstract nature, understanding infinity as an ongoing, never ending process, understanding infinity as a set of an infinite number of elements and appreciating well-known paradoxes. Infinity can be understood in several ways with often incompatible meanings, and can involve value judgments or assumptions that are neither explicit nor desired. To usher in its definition, we distinguish several aspects, teleological, artistic (Escher); some definitive, some potential, and others actual. This article also deals with some still unresolved aspects of the concept of infinity.
Resumo:
Although the recycling of municipal wastewater can play an important role in water supply security and ecosystem protection, the percentage of wastewater recycled is generally low and strikingly variable. Previous research has employed detailed case studies to examine the factors that contribute to recycling success but usually lacks a comparative perspective across cases. In this study, 25 water utilities in New South Wales, Australia, were compared using fuzzy-set Qualitative Comparative Analysis (fsQCA). This research method applies binary logic and set theory to identify the minimal combinations of conditions that are necessary and/or sufficient for an outcome to occur within the set of cases analyzed. The influence of six factors (rainfall, population density, coastal or inland location, proximity to users; cost recovery and revenue for water supply services) was examined for two outcomes, agricultural use and "heavy" (i.e., commercial/municipal/industrial) use. Each outcome was explained by two different pathways, illustrating that different combinations of conditions are associated with the same outcome. Generally, while economic factors are crucial for heavy use, factors relating to water stress and geographical proximity matter most for agricultural reuse. These results suggest that policies to promote wastewater reuse may be most effective if they target uses that are most feasible for utilities and correspond to the local context. This work also makes a methodological contribution through illustrating the potential utility of fsQCA for understanding the complex drivers of performance in water recycling.
Resumo:
Includes bibliographical references.
Resumo:
"This work was supported in part by the National Science Foundation under Grant No. US NSF GJ41538."
Resumo:
Cover title.
Resumo:
Mode of access: Internet.
Resumo:
Available on demand as hard copy or computer file from Cornell University Library.
Resumo:
Mode of access: Internet.