956 resultados para Sensorimotor graph


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In order to generate skilled and efficient actions, the motor system must find solutions to several problems inherent in sensorimotor control, including nonlinearity, nonstationarity, delays, redundancy, uncertainty, and noise. We review these problems and five computational mechanisms that the brain may use to limit their deleterious effects: optimal feedback control, impedance control, predictive control, Bayesian decision theory, and sensorimotor learning. Together, these computational mechanisms allow skilled and fluent sensorimotor behavior.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The exploits of Martina Navratilova and Roger Federer represent the pinnacle of motor learning. However, when considering the range and complexity of the processes that are involved in motor learning, even the mere mortals among us exhibit abilities that are impressive. We exercise these abilities when taking up new activities-whether it is snowboarding or ballroom dancing-but also engage in substantial motor learning on a daily basis as we adapt to changes in our environment, manipulate new objects and refine existing skills. Here we review recent research in human motor learning with an emphasis on the computational mechanisms that are involved. © 2011 Macmillan Publishers Limited. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Real-world tasks often require movements that depend on a previous action or on changes in the state of the world. Here we investigate whether motor memories encode the current action in a manner that depends on previous sensorimotor states. Human subjects performed trials in which they made movements in a randomly selected clockwise or counterclockwise velocity-dependent curl force field. Movements during this adaptation phase were preceded by a contextual phase that determined which of the two fields would be experienced on any given trial. As expected from previous research, when static visual cues were presented in the contextual phase, strong interference (resulting in an inability to learn either field) was observed. In contrast, when the contextual phase involved subjects making a movement that was continuous with the adaptation-phase movement, a substantial reduction in interference was seen. As the time between the contextual and adaptation movement increased, so did the interference, reaching a level similar to that seen for static visual cues for delays >600 ms. This contextual effect generalized to purely visual motion, active movement without vision, passive movement, and isometric force generation. Our results show that sensorimotor states that differ in their recent temporal history can engage distinct representations in motor memory, but this effect decays progressively over time and is abolished by ∼600 ms. This suggests that motor memories are encoded not simply as a mapping from current state to motor command but are encoded in terms of the recent history of sensorimotor states.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We consider a large scale network of interconnected heterogeneous dynamical components. Scalable stability conditions are derived that involve the input/output properties of individual subsystems and the interconnection matrix. The analysis is based on the Davis-Wielandt shell, a higher dimensional version of the numerical range with important convexity properties. This can be used to allow heterogeneity in the agent dynamics while relaxing normality and symmetry assumptions on the interconnection matrix. The results include small gain and passivity approaches as special cases, with the three dimensional shell shown to be inherently connected with corresponding graph separation arguments. © 2012 Society for Industrial and Applied Mathematics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

After committing to an action, a decision-maker can change their mind to revise the action. Such changes of mind can even occur when the stream of information that led to the action is curtailed at movement onset. This is explained by the time delays in sensory processing and motor planning which lead to a component at the end of the sensory stream that can only be processed after initiation. Such post-initiation processing can explain the pattern of changes of mind by asserting an accumulation of additional evidence to a criterion level, termed change-of-mind bound. Here we test the hypothesis that physical effort associated with the movement required to change one's mind affects the level of the change-of-mind bound and the time for post-initiation deliberation. We varied the effort required to change from one choice target to another in a reaching movement by varying the geometry of the choice targets or by applying a force field between the targets. We show that there is a reduction in the frequency of change of mind when the separation of the choice targets would require a larger excursion of the hand from the initial to the opposite choice. The reduction is best explained by an increase in the evidence required for changes of mind and a reduced time period of integration after the initial decision. Thus the criteria to revise an initial choice is sensitive to energetic costs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is still not known how the 'rudimentary' movements of fetuses and infants are transformed into the coordinated, flexible and adaptive movements of adults. In addressing this important issue, we consider a behavior that has been perennially viewed as a functionless by-product of a dreaming brain: the jerky limb movements called myoclonic twitches. Recent work has identified the neural mechanisms that produce twitching as well as those that convey sensory feedback from twitching limbs to the spinal cord and brain. In turn, these mechanistic insights have helped inspire new ideas about the functional roles that twitching might play in the self-organization of spinal and supraspinal sensorimotor circuits. Striking support for these ideas is coming from the field of developmental robotics: when twitches are mimicked in robot models of the musculoskeletal system, the basic neural circuitry undergoes self-organization. Mutually inspired biological and synthetic approaches promise not only to produce better robots, but also to solve fundamental problems concerning the developmental origins of sensorimotor maps in the spinal cord and brain.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Knowledge management is a critical issue for the next-generation web application, because the next-generation web is becoming a semantic web, a knowledge-intensive network. XML Topic Map (XTM), a new standard, is appearing in this field as one of the structures for the semantic web. It organizes information in a way that can be optimized for navigation. In this paper, a new set of hyper-graph operations on XTM (HyO-XTM) is proposed to manage the distributed knowledge resources.HyO-XTM is based on the XTM hyper-graph model. It is well applied upon XTM to simplify the workload of knowledge management.The application of the XTM hyper-graph operations is demonstrated by the knowledge management system of a consulting firm. HyO-XTM shows the potential to lead the knowledge management to the next-generation web.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

ACM SIGIR; ACM SIGWEB