864 resultados para Sensor Data Fusion Applicazioni


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sensor network deployments have become a primary source of big data about the real world that surrounds us, measuring a wide range of physical properties in real time. With such large amounts of heterogeneous data, a key challenge is to describe and annotate sensor data with high-level metadata, using and extending models, for instance with ontologies. However, to automate this task there is a need for enriching the sensor metadata using the actual observed measurements and extracting useful meta-information from them. This paper proposes a novel approach of characterization and extraction of semantic metadata through the analysis of sensor data raw observations. This approach consists in using approximations to represent the raw sensor measurements, based on distributions of the observation slopes, building a classi?cation scheme to automatically infer sensor metadata like the type of observed property, integrating the semantic analysis results with existing sensor networks metadata.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thesis (Ph.D.)--University of Washington, 2016-06

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A reliable perception of the real world is a key-feature for an autonomous vehicle and the Advanced Driver Assistance Systems (ADAS). Obstacles detection (OD) is one of the main components for the correct reconstruction of the dynamic world. Historical approaches based on stereo vision and other 3D perception technologies (e.g. LIDAR) have been adapted to the ADAS first and autonomous ground vehicles, after, providing excellent results. The obstacles detection is a very broad field and this domain counts a lot of works in the last years. In academic research, it has been clearly established the essential role of these systems to realize active safety systems for accident prevention, reflecting also the innovative systems introduced by industry. These systems need to accurately assess situational criticalities and simultaneously assess awareness of these criticalities by the driver; it requires that the obstacles detection algorithms must be reliable and accurate, providing: a real-time output, a stable and robust representation of the environment and an estimation independent from lighting and weather conditions. Initial systems relied on only one exteroceptive sensor (e.g. radar or laser for ACC and camera for LDW) in addition to proprioceptive sensors such as wheel speed and yaw rate sensors. But, current systems, such as ACC operating at the entire speed range or autonomous braking for collision avoidance, require the use of multiple sensors since individually they can not meet these requirements. It has led the community to move towards the use of a combination of them in order to exploit the benefits of each one. Pedestrians and vehicles detection are ones of the major thrusts in situational criticalities assessment, still remaining an active area of research. ADASs are the most prominent use case of pedestrians and vehicles detection. Vehicles should be equipped with sensing capabilities able to detect and act on objects in dangerous situations, where the driver would not be able to avoid a collision. A full ADAS or autonomous vehicle, with regard to pedestrians and vehicles, would not only include detection but also tracking, orientation, intent analysis, and collision prediction. The system detects obstacles using a probabilistic occupancy grid built from a multi-resolution disparity map. Obstacles classification is based on an AdaBoost SoftCascade trained on Aggregate Channel Features. A final stage of tracking and fusion guarantees stability and robustness to the result.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recent advances in technology have produced a significant increase in the availability of free sensor data over the Internet. With affordable weather monitoring stations now available to individual meteorology enthusiasts a reservoir of real time data such as temperature, rainfall and wind speed can now be obtained for most of the United States and Europe. Despite the abundance of available data, obtaining useable information about the weather in your local neighbourhood requires complex processing that poses several challenges. This paper discusses a collection of technologies and applications that harvest, refine and process this data, culminating in information that has been tailored toward the user. In this case we are particularly interested in allowing a user to make direct queries about the weather at any location, even when this is not directly instrumented, using interpolation methods. We also consider how the uncertainty that the interpolation introduces can then be communicated to the user of the system, using UncertML, a developing standard for uncertainty representation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recent advances in technology have produced a significant increase in the availability of free sensor data over the Internet. With affordable weather monitoring stations now available to individual meteorology enthusiasts a reservoir of real time data such as temperature, rainfall and wind speed can now be obtained for most of the United States and Europe. Despite the abundance of available data, obtaining useable information about the weather in your local neighbourhood requires complex processing that poses several challenges. This paper discusses a collection of technologies and applications that harvest, refine and process this data, culminating in information that has been tailored toward the user. In this case we are particularly interested in allowing a user to make direct queries about the weather at any location, even when this is not directly instrumented, using interpolation methods. We also consider how the uncertainty that the interpolation introduces can then be communicated to the user of the system, using UncertML, a developing standard for uncertainty representation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Heterogeneous datasets arise naturally in most applications due to the use of a variety of sensors and measuring platforms. Such datasets can be heterogeneous in terms of the error characteristics and sensor models. Treating such data is most naturally accomplished using a Bayesian or model-based geostatistical approach; however, such methods generally scale rather badly with the size of dataset, and require computationally expensive Monte Carlo based inference. Recently within the machine learning and spatial statistics communities many papers have explored the potential of reduced rank representations of the covariance matrix, often referred to as projected or fixed rank approaches. In such methods the covariance function of the posterior process is represented by a reduced rank approximation which is chosen such that there is minimal information loss. In this paper a sequential Bayesian framework for inference in such projected processes is presented. The observations are considered one at a time which avoids the need for high dimensional integrals typically required in a Bayesian approach. A C++ library, gptk, which is part of the INTAMAP web service, is introduced which implements projected, sequential estimation and adds several novel features. In particular the library includes the ability to use a generic observation operator, or sensor model, to permit data fusion. It is also possible to cope with a range of observation error characteristics, including non-Gaussian observation errors. Inference for the covariance parameters is explored, including the impact of the projected process approximation on likelihood profiles. We illustrate the projected sequential method in application to synthetic and real datasets. Limitations and extensions are discussed. © 2010 Elsevier Ltd.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Simultaneous Localization and Mapping (SLAM) is a procedure used to determine the location of a mobile vehicle in an unknown environment, while constructing a map of the unknown environment at the same time. Mobile platforms, which make use of SLAM algorithms, have industrial applications in autonomous maintenance, such as the inspection of flaws and defects in oil pipelines and storage tanks. A typical SLAM consists of four main components, namely, experimental setup (data gathering), vehicle pose estimation, feature extraction, and filtering. Feature extraction is the process of realizing significant features from the unknown environment such as corners, edges, walls, and interior features. In this work, an original feature extraction algorithm specific to distance measurements obtained through SONAR sensor data is presented. This algorithm has been constructed by combining the SONAR Salient Feature Extraction Algorithm and the Triangulation Hough Based Fusion with point-in-polygon detection. The reconstructed maps obtained through simulations and experimental data with the fusion algorithm are compared to the maps obtained with existing feature extraction algorithms. Based on the results obtained, it is suggested that the proposed algorithm can be employed as an option for data obtained from SONAR sensors in environment, where other forms of sensing are not viable. The algorithm fusion for feature extraction requires the vehicle pose estimation as an input, which is obtained from a vehicle pose estimation model. For the vehicle pose estimation, the author uses sensor integration to estimate the pose of the mobile vehicle. Different combinations of these sensors are studied (e.g., encoder, gyroscope, or encoder and gyroscope). The different sensor fusion techniques for the pose estimation are experimentally studied and compared. The vehicle pose estimation model, which produces the least amount of error, is used to generate inputs for the feature extraction algorithm fusion. In the experimental studies, two different environmental configurations are used, one without interior features and another one with two interior features. Numerical and experimental findings are discussed. Finally, the SLAM algorithm is implemented along with the algorithms for feature extraction and vehicle pose estimation. Three different cases are experimentally studied, with the floor of the environment intentionally altered to induce slipping. Results obtained for implementations with and without SLAM are compared and discussed. The present work represents a step towards the realization of autonomous inspection platforms for performing concurrent localization and mapping in harsh environments.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis reports on an investigation of the feasibility and usefulness of incorporating dynamic management facilities for managing sensed context data in a distributed contextaware mobile application. The investigation focuses on reducing the work required to integrate new sensed context streams in an existing context aware architecture. Current architectures require integration work for new streams and new contexts that are encountered. This means of operation is acceptable for current fixed architectures. However, as systems become more mobile the number of discoverable streams increases. Without the ability to discover and use these new streams the functionality of any given device will be limited to the streams that it knows how to decode. The integration of new streams requires that the sensed context data be understood by the current application. If the new source provides data of a type that an application currently requires then the new source should be connected to the application without any prior knowledge of the new source. If the type is similar and can be converted then this stream too should be appropriated by the application. Such applications are based on portable devices (phones, PDAs) for semi-autonomous services that use data from sensors connected to the devices, plus data exchanged with other such devices and remote servers. Such applications must handle input from a variety of sensors, refining the data locally and managing its communication from the device in volatile and unpredictable network conditions. The choice to focus on locally connected sensory input allows for the introduction of privacy and access controls. This local control can determine how the information is communicated to others. This investigation focuses on the evaluation of three approaches to sensor data management. The first system is characterised by its static management based on the pre-pended metadata. This was the reference system. Developed for a mobile system, the data was processed based on the attached metadata. The code that performed the processing was static. The second system was developed to move away from the static processing and introduce a greater freedom of handling for the data stream, this resulted in a heavy weight approach. The approach focused on pushing the processing of the data into a number of networked nodes rather than the monolithic design of the previous system. By creating a separate communication channel for the metadata it is possible to be more flexible with the amount and type of data transmitted. The final system pulled the benefits of the other systems together. By providing a small management class that would load a separate handler based on the incoming data, Dynamism was maximised whilst maintaining ease of code understanding. The three systems were then compared to highlight their ability to dynamically manage new sensed context. The evaluation took two approaches, the first is a quantitative analysis of the code to understand the complexity of the relative three systems. This was done by evaluating what changes to the system were involved for the new context. The second approach takes a qualitative view of the work required by the software engineer to reconfigure the systems to provide support for a new data stream. The evaluation highlights the various scenarios in which the three systems are most suited. There is always a trade-o↵ in the development of a system. The three approaches highlight this fact. The creation of a statically bound system can be quick to develop but may need to be completely re-written if the requirements move too far. Alternatively a highly dynamic system may be able to cope with new requirements but the developer time to create such a system may be greater than the creation of several simpler systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

At national and European levels, in various projects, data products are developed to provide end-users and stakeholders with homogeneously qualified observation compilation or analysis. Ifremer has developed a spatial data infrastructure for marine environment, called Sextant, in order to manage, share and retrieve these products for its partners and the general public. Thanks to the OGC and ISO standard and INSPIRE compliance, the infrastructure provides a unique framework to federate homogeneous descriptions and access to marine data products processed in various contexts, at national level or European level for DG research (SeaDataNet), DG Mare (EMODNET) and DG Growth (Copernicus MEMS). The discovery service of Sextant is based on the metadata catalogue. The data description is normalized according to ISO 191XX series standards and Inspire recommendations. Access to the catalogue is provided by the standard OGC service, Catalogue Service for the Web (CSW 2.0.2). Data visualization and data downloading are available through standard OGC services, Web Map Services (WMS) and Web Feature Services (WFS). Several OGC services are provided within Sextant, according to marine themes, regions and projects. Depending on the file format, WMTS services are used for large images, such as hyperspectral images, or NcWMS services for gridded data, such as climatology models. New functions are developped to improve the visualization, analyse and access to data, eg : data filtering, online spatial processing with WPS services and acces to sensor data with SOS services.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

By providing vehicle-to-vehicle and vehicle-to-infrastructure wireless communications, vehicular ad hoc networks (VANETs), also known as the “networks on wheels”, can greatly enhance traffic safety, traffic efficiency and driving experience for intelligent transportation system (ITS). However, the unique features of VANETs, such as high mobility and uneven distribution of vehicular nodes, impose critical challenges of high efficiency and reliability for the implementation of VANETs. This dissertation is motivated by the great application potentials of VANETs in the design of efficient in-network data processing and dissemination. Considering the significance of message aggregation, data dissemination and data collection, this dissertation research targets at enhancing the traffic safety and traffic efficiency, as well as developing novel commercial applications, based on VANETs, following four aspects: 1) accurate and efficient message aggregation to detect on-road safety relevant events, 2) reliable data dissemination to reliably notify remote vehicles, 3) efficient and reliable spatial data collection from vehicular sensors, and 4) novel promising applications to exploit the commercial potentials of VANETs. Specifically, to enable cooperative detection of safety relevant events on the roads, the structure-less message aggregation (SLMA) scheme is proposed to improve communication efficiency and message accuracy. The scheme of relative position based message dissemination (RPB-MD) is proposed to reliably and efficiently disseminate messages to all intended vehicles in the zone-of-relevance in varying traffic density. Due to numerous vehicular sensor data available based on VANETs, the scheme of compressive sampling based data collection (CS-DC) is proposed to efficiently collect the spatial relevance data in a large scale, especially in the dense traffic. In addition, with novel and efficient solutions proposed for the application specific issues of data dissemination and data collection, several appealing value-added applications for VANETs are developed to exploit the commercial potentials of VANETs, namely general purpose automatic survey (GPAS), VANET-based ambient ad dissemination (VAAD) and VANET based vehicle performance monitoring and analysis (VehicleView). Thus, by improving the efficiency and reliability in in-network data processing and dissemination, including message aggregation, data dissemination and data collection, together with the development of novel promising applications, this dissertation will help push VANETs further to the stage of massive deployment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To analyze the characteristics and predict the dynamic behaviors of complex systems over time, comprehensive research to enable the development of systems that can intelligently adapt to the evolving conditions and infer new knowledge with algorithms that are not predesigned is crucially needed. This dissertation research studies the integration of the techniques and methodologies resulted from the fields of pattern recognition, intelligent agents, artificial immune systems, and distributed computing platforms, to create technologies that can more accurately describe and control the dynamics of real-world complex systems. The need for such technologies is emerging in manufacturing, transportation, hazard mitigation, weather and climate prediction, homeland security, and emergency response. Motivated by the ability of mobile agents to dynamically incorporate additional computational and control algorithms into executing applications, mobile agent technology is employed in this research for the adaptive sensing and monitoring in a wireless sensor network. Mobile agents are software components that can travel from one computing platform to another in a network and carry programs and data states that are needed for performing the assigned tasks. To support the generation, migration, communication, and management of mobile monitoring agents, an embeddable mobile agent system (Mobile-C) is integrated with sensor nodes. Mobile monitoring agents visit distributed sensor nodes, read real-time sensor data, and perform anomaly detection using the equipped pattern recognition algorithms. The optimal control of agents is achieved by mimicking the adaptive immune response and the application of multi-objective optimization algorithms. The mobile agent approach provides potential to reduce the communication load and energy consumption in monitoring networks. The major research work of this dissertation project includes: (1) studying effective feature extraction methods for time series measurement data; (2) investigating the impact of the feature extraction methods and dissimilarity measures on the performance of pattern recognition; (3) researching the effects of environmental factors on the performance of pattern recognition; (4) integrating an embeddable mobile agent system with wireless sensor nodes; (5) optimizing agent generation and distribution using artificial immune system concept and multi-objective algorithms; (6) applying mobile agent technology and pattern recognition algorithms for adaptive structural health monitoring and driving cycle pattern recognition; (7) developing a web-based monitoring network to enable the visualization and analysis of real-time sensor data remotely. Techniques and algorithms developed in this dissertation project will contribute to research advances in networked distributed systems operating under changing environments.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The wavelet packet transform decomposes a signal into a set of bases for time–frequency analysis. This decomposition creates an opportunity for implementing distributed data mining where features are extracted from different wavelet packet bases and served as feature vectors for applications. This paper presents a novel approach for integrated machine fault diagnosis based on localised wavelet packet bases of vibration signals. The best basis is firstly determined according to its classification capability. Data mining is then applied to extract features and local decisions are drawn using Bayesian inference. A final conclusion is reached using a weighted average method in data fusion. A case study on rolling element bearing diagnosis shows that this approach can greatly improve the accuracy ofdiagno sis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recovering position from sensor information is an important problem in mobile robotics, known as localisation. Localisation requires a map or some other description of the environment to provide the robot with a context to interpret sensor data. The mobile robot system under discussion is using an artificial neural representation of position. Building a geometrical map of the environment with a single camera and artificial neural networks is difficult. Instead it would be simpler to learn position as a function of the visual input. Usually when learning images, an intermediate representation is employed. An appropriate starting point for biologically plausible image representation is the complex cells of the visual cortex, which have invariance properties that appear useful for localisation. The effectiveness for localisation of two different complex cell models are evaluated. Finally the ability of a simple neural network with single shot learning to recognise these representations and localise a robot is examined.