953 resultados para Semi-supervised classification


Relevância:

80.00% 80.00%

Publicador:

Resumo:

En esta tesis se aborda la detección y el seguimiento automático de vehículos mediante técnicas de visión artificial con una cámara monocular embarcada. Este problema ha suscitado un gran interés por parte de la industria automovilística y de la comunidad científica ya que supone el primer paso en aras de la ayuda a la conducción, la prevención de accidentes y, en última instancia, la conducción automática. A pesar de que se le ha dedicado mucho esfuerzo en los últimos años, de momento no se ha encontrado ninguna solución completamente satisfactoria y por lo tanto continúa siendo un tema de investigación abierto. Los principales problemas que plantean la detección y seguimiento mediante visión artificial son la gran variabilidad entre vehículos, un fondo que cambia dinámicamente debido al movimiento de la cámara, y la necesidad de operar en tiempo real. En este contexto, esta tesis propone un marco unificado para la detección y seguimiento de vehículos que afronta los problemas descritos mediante un enfoque estadístico. El marco se compone de tres grandes bloques, i.e., generación de hipótesis, verificación de hipótesis, y seguimiento de vehículos, que se llevan a cabo de manera secuencial. No obstante, se potencia el intercambio de información entre los diferentes bloques con objeto de obtener el máximo grado posible de adaptación a cambios en el entorno y de reducir el coste computacional. Para abordar la primera tarea de generación de hipótesis, se proponen dos métodos complementarios basados respectivamente en el análisis de la apariencia y la geometría de la escena. Para ello resulta especialmente interesante el uso de un dominio transformado en el que se elimina la perspectiva de la imagen original, puesto que este dominio permite una búsqueda rápida dentro de la imagen y por tanto una generación eficiente de hipótesis de localización de los vehículos. Los candidatos finales se obtienen por medio de un marco colaborativo entre el dominio original y el dominio transformado. Para la verificación de hipótesis se adopta un método de aprendizaje supervisado. Así, se evalúan algunos de los métodos de extracción de características más populares y se proponen nuevos descriptores con arreglo al conocimiento de la apariencia de los vehículos. Para evaluar la efectividad en la tarea de clasificación de estos descriptores, y dado que no existen bases de datos públicas que se adapten al problema descrito, se ha generado una nueva base de datos sobre la que se han realizado pruebas masivas. Finalmente, se presenta una metodología para la fusión de los diferentes clasificadores y se plantea una discusión sobre las combinaciones que ofrecen los mejores resultados. El núcleo del marco propuesto está constituido por un método Bayesiano de seguimiento basado en filtros de partículas. Se plantean contribuciones en los tres elementos fundamentales de estos filtros: el algoritmo de inferencia, el modelo dinámico y el modelo de observación. En concreto, se propone el uso de un método de muestreo basado en MCMC que evita el elevado coste computacional de los filtros de partículas tradicionales y por consiguiente permite que el modelado conjunto de múltiples vehículos sea computacionalmente viable. Por otra parte, el dominio transformado mencionado anteriormente permite la definición de un modelo dinámico de velocidad constante ya que se preserva el movimiento suave de los vehículos en autopistas. Por último, se propone un modelo de observación que integra diferentes características. En particular, además de la apariencia de los vehículos, el modelo tiene en cuenta también toda la información recibida de los bloques de procesamiento previos. El método propuesto se ejecuta en tiempo real en un ordenador de propósito general y da unos resultados sobresalientes en comparación con los métodos tradicionales. ABSTRACT This thesis addresses on-road vehicle detection and tracking with a monocular vision system. This problem has attracted the attention of the automotive industry and the research community as it is the first step for driver assistance and collision avoidance systems and for eventual autonomous driving. Although many effort has been devoted to address it in recent years, no satisfactory solution has yet been devised and thus it is an active research issue. The main challenges for vision-based vehicle detection and tracking are the high variability among vehicles, the dynamically changing background due to camera motion and the real-time processing requirement. In this thesis, a unified approach using statistical methods is presented for vehicle detection and tracking that tackles these issues. The approach is divided into three primary tasks, i.e., vehicle hypothesis generation, hypothesis verification, and vehicle tracking, which are performed sequentially. Nevertheless, the exchange of information between processing blocks is fostered so that the maximum degree of adaptation to changes in the environment can be achieved and the computational cost is alleviated. Two complementary strategies are proposed to address the first task, i.e., hypothesis generation, based respectively on appearance and geometry analysis. To this end, the use of a rectified domain in which the perspective is removed from the original image is especially interesting, as it allows for fast image scanning and coarse hypothesis generation. The final vehicle candidates are produced using a collaborative framework between the original and the rectified domains. A supervised classification strategy is adopted for the verification of the hypothesized vehicle locations. In particular, state-of-the-art methods for feature extraction are evaluated and new descriptors are proposed by exploiting the knowledge on vehicle appearance. Due to the lack of appropriate public databases, a new database is generated and the classification performance of the descriptors is extensively tested on it. Finally, a methodology for the fusion of the different classifiers is presented and the best combinations are discussed. The core of the proposed approach is a Bayesian tracking framework using particle filters. Contributions are made on its three key elements: the inference algorithm, the dynamic model and the observation model. In particular, the use of a Markov chain Monte Carlo method is proposed for sampling, which circumvents the exponential complexity increase of traditional particle filters thus making joint multiple vehicle tracking affordable. On the other hand, the aforementioned rectified domain allows for the definition of a constant-velocity dynamic model since it preserves the smooth motion of vehicles in highways. Finally, a multiple-cue observation model is proposed that not only accounts for vehicle appearance but also integrates the available information from the analysis in the previous blocks. The proposed approach is proven to run near real-time in a general purpose PC and to deliver outstanding results compared to traditional methods.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper describes the participation of DAEDALUS at ImageCLEF 2011 Plant Identification task. The task is evaluated as a supervised classification problem over 71 tree species from the French Mediterranean area used as class labels, based on visual content from scan, scan-like and natural photo images. Our approach to this task is to build a classifier based on the detection of keypoints from the images extracted using Lowe’s Scale Invariant Feature Transform (SIFT) algorithm. Although our overall classification score is very low as compared to other participant groups, the main conclusion that can be drawn is that SIFT keypoints seem to work significantly better for photos than for the other image types, so our approach may be a feasible strategy for the classification of this kind of visual content.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Background Malignancies arising in the large bowel cause the second largest number of deaths from cancer in the Western World. Despite progresses made during the last decades, colorectal cancer remains one of the most frequent and deadly neoplasias in the western countries. Methods A genomic study of human colorectal cancer has been carried out on a total of 31 tumoral samples, corresponding to different stages of the disease, and 33 non-tumoral samples. The study was carried out by hybridisation of the tumour samples against a reference pool of non-tumoral samples using Agilent Human 1A 60-mer oligo microarrays. The results obtained were validated by qRT-PCR. In the subsequent bioinformatics analysis, gene networks by means of Bayesian classifiers, variable selection and bootstrap resampling were built. The consensus among all the induced models produced a hierarchy of dependences and, thus, of variables. Results After an exhaustive process of pre-processing to ensure data quality--lost values imputation, probes quality, data smoothing and intraclass variability filtering--the final dataset comprised a total of 8, 104 probes. Next, a supervised classification approach and data analysis was carried out to obtain the most relevant genes. Two of them are directly involved in cancer progression and in particular in colorectal cancer. Finally, a supervised classifier was induced to classify new unseen samples. Conclusions We have developed a tentative model for the diagnosis of colorectal cancer based on a biomarker panel. Our results indicate that the gene profile described herein can discriminate between non-cancerous and cancerous samples with 94.45% accuracy using different supervised classifiers (AUC values in the range of 0.997 and 0.955)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Las técnicas de cirugía de mínima invasión (CMI) se están consolidando hoy en día como alternativa a la cirugía tradicional, debido a sus numerosos beneficios para los pacientes. Este cambio de paradigma implica que los cirujanos deben aprender una serie de habilidades distintas de aquellas requeridas en cirugía abierta. El entrenamiento y evaluación de estas habilidades se ha convertido en una de las mayores preocupaciones en los programas de formación de cirujanos, debido en gran parte a la presión de una sociedad que exige cirujanos bien preparados y una reducción en el número de errores médicos. Por tanto, se está prestando especial atención a la definición de nuevos programas que permitan el entrenamiento y la evaluación de las habilidades psicomotoras en entornos seguros antes de que los nuevos cirujanos puedan operar sobre pacientes reales. Para tal fin, hospitales y centros de formación están gradualmente incorporando instalaciones de entrenamiento donde los residentes puedan practicar y aprender sin riesgos. Es cada vez más común que estos laboratorios dispongan de simuladores virtuales o simuladores físicos capaces de registrar los movimientos del instrumental de cada residente. Estos simuladores ofrecen una gran variedad de tareas de entrenamiento y evaluación, así como la posibilidad de obtener información objetiva de los ejercicios. Los diferentes estudios de validación llevados a cabo dan muestra de su utilidad; pese a todo, los niveles de evidencia presentados son en muchas ocasiones insuficientes. Lo que es más importante, no existe un consenso claro a la hora de definir qué métricas son más útiles para caracterizar la pericia quirúrgica. El objetivo de esta tesis doctoral es diseñar y validar un marco de trabajo conceptual para la definición y validación de entornos para la evaluación de habilidades en CMI, en base a un modelo en tres fases: pedagógica (tareas y métricas a emplear), tecnológica (tecnologías de adquisición de métricas) y analítica (interpretación de la competencia en base a las métricas). Para tal fin, se describe la implementación práctica de un entorno basado en (1) un sistema de seguimiento de instrumental fundamentado en el análisis del vídeo laparoscópico; y (2) la determinación de la pericia en base a métricas de movimiento del instrumental. Para la fase pedagógica se diseñó e implementó un conjunto de tareas para la evaluación de habilidades psicomotoras básicas, así como una serie de métricas de movimiento. La validación de construcción llevada a cabo sobre ellas mostró buenos resultados para tiempo, camino recorrido, profundidad, velocidad media, aceleración media, economía de área y economía de volumen. Adicionalmente, los resultados obtenidos en la validación de apariencia fueron en general positivos en todos los grupos considerados (noveles, residentes, expertos). Para la fase tecnológica, se introdujo el EVA Tracking System, una solución para el seguimiento del instrumental quirúrgico basado en el análisis del vídeo endoscópico. La precisión del sistema se evaluó a 16,33ppRMS para el seguimiento 2D de la herramienta en la imagen; y a 13mmRMS para el seguimiento espacial de la misma. La validación de construcción con una de las tareas de evaluación mostró buenos resultados para tiempo, camino recorrido, profundidad, velocidad media, aceleración media, economía de área y economía de volumen. La validación concurrente con el TrEndo® Tracking System por su parte presentó valores altos de correlación para 8 de las 9 métricas analizadas. Finalmente, para la fase analítica se comparó el comportamiento de tres clasificadores supervisados a la hora de determinar automáticamente la pericia quirúrgica en base a la información de movimiento del instrumental, basados en aproximaciones lineales (análisis lineal discriminante, LDA), no lineales (máquinas de soporte vectorial, SVM) y difusas (sistemas adaptativos de inferencia neurodifusa, ANFIS). Los resultados muestran que en media SVM presenta un comportamiento ligeramente superior: 78,2% frente a los 71% y 71,7% obtenidos por ANFIS y LDA respectivamente. Sin embargo las diferencias estadísticas medidas entre los tres no fueron demostradas significativas. En general, esta tesis doctoral corrobora las hipótesis de investigación postuladas relativas a la definición de sistemas de evaluación de habilidades para cirugía de mínima invasión, a la utilidad del análisis de vídeo como fuente de información y a la importancia de la información de movimiento de instrumental a la hora de caracterizar la pericia quirúrgica. Basándose en estos cimientos, se han de abrir nuevos campos de investigación que contribuyan a la definición de programas de formación estructurados y objetivos, que puedan garantizar la acreditación de cirujanos sobradamente preparados y promocionen la seguridad del paciente en el quirófano. Abstract Minimally invasive surgery (MIS) techniques have become a standard in many surgical sub-specialties, due to their many benefits for patients. However, this shift in paradigm implies that surgeons must acquire a complete different set of skills than those normally attributed to open surgery. Training and assessment of these skills has become a major concern in surgical learning programmes, especially considering the social demand for better-prepared professionals and for the decrease of medical errors. Therefore, much effort is being put in the definition of structured MIS learning programmes, where practice with real patients in the operating room (OR) can be delayed until the resident can attest for a minimum level of psychomotor competence. To this end, skills’ laboratory settings are being introduced in hospitals and training centres where residents may practice and be assessed on their psychomotor skills. Technological advances in the field of tracking technologies and virtual reality (VR) have enabled the creation of new learning systems such as VR simulators or enhanced box trainers. These systems offer a wide range of tasks, as well as the capability of registering objective data on the trainees’ performance. Validation studies give proof of their usefulness; however, levels of evidence reported are in many cases low. More importantly, there is still no clear consensus on topics such as the optimal metrics that must be used to assess competence, the validity of VR simulation, the portability of tracking technologies into real surgeries (for advanced assessment) or the degree to which the skills measured and obtained in laboratory environments transfer to the OR. The purpose of this PhD is to design and validate a conceptual framework for the definition and validation of MIS assessment environments based on a three-pillared model defining three main stages: pedagogical (tasks and metrics to employ), technological (metric acquisition technologies) and analytical (interpretation of competence based on metrics). To this end, a practical implementation of the framework is presented, focused on (1) a video-based tracking system and (2) the determination of surgical competence based on the laparoscopic instruments’ motionrelated data. The pedagogical stage’s results led to the design and implementation of a set of basic tasks for MIS psychomotor skills’ assessment, as well as the definition of motion analysis parameters (MAPs) to measure performance on said tasks. Validation yielded good construct results for parameters such as time, path length, depth, average speed, average acceleration, economy of area and economy of volume. Additionally, face validation results showed positive acceptance on behalf of the experts, residents and novices. For the technological stage the EVA Tracking System is introduced. EVA provides a solution for tracking laparoscopic instruments from the analysis of the monoscopic video image. Accuracy tests for the system are presented, which yielded an average RMSE of 16.33pp for 2D tracking of the instrument on the image and of 13mm for 3D spatial tracking. A validation experiment was conducted using one of the tasks and the most relevant MAPs. Construct validation showed significant differences for time, path length, depth, average speed, average acceleration, economy of area and economy of volume; especially between novices and residents/experts. More importantly, concurrent validation with the TrEndo® Tracking System presented high correlation values (>0.7) for 8 of the 9 MAPs proposed. Finally, the analytical stage allowed comparing the performance of three different supervised classification strategies in the determination of surgical competence based on motion-related information. The three classifiers were based on linear (linear discriminant analysis, LDA), non-linear (support vector machines, SVM) and fuzzy (adaptive neuro fuzzy inference systems, ANFIS) approaches. Results for SVM show slightly better performance than the other two classifiers: on average, accuracy for LDA, SVM and ANFIS was of 71.7%, 78.2% and 71% respectively. However, when confronted, no statistical significance was found between any of the three. Overall, this PhD corroborates the investigated research hypotheses regarding the definition of MIS assessment systems, the use of endoscopic video analysis as the main source of information and the relevance of motion analysis in the determination of surgical competence. New research fields in the training and assessment of MIS surgeons can be proposed based on these foundations, in order to contribute to the definition of structured and objective learning programmes that guarantee the accreditation of well-prepared professionals and the promotion of patient safety in the OR.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Pragmatism is the leading motivation of regularization. We can understand regularization as a modification of the maximum-likelihood estimator so that a reasonable answer could be given in an unstable or ill-posed situation. To mention some typical examples, this happens when fitting parametric or non-parametric models with more parameters than data or when estimating large covariance matrices. Regularization is usually used, in addition, to improve the bias-variance tradeoff of an estimation. Then, the definition of regularization is quite general, and, although the introduction of a penalty is probably the most popular type, it is just one out of multiple forms of regularization. In this dissertation, we focus on the applications of regularization for obtaining sparse or parsimonious representations, where only a subset of the inputs is used. A particular form of regularization, L1-regularization, plays a key role for reaching sparsity. Most of the contributions presented here revolve around L1-regularization, although other forms of regularization are explored (also pursuing sparsity in some sense). In addition to present a compact review of L1-regularization and its applications in statistical and machine learning, we devise methodology for regression, supervised classification and structure induction of graphical models. Within the regression paradigm, we focus on kernel smoothing learning, proposing techniques for kernel design that are suitable for high dimensional settings and sparse regression functions. We also present an application of regularized regression techniques for modeling the response of biological neurons. Supervised classification advances deal, on the one hand, with the application of regularization for obtaining a na¨ıve Bayes classifier and, on the other hand, with a novel algorithm for brain-computer interface design that uses group regularization in an efficient manner. Finally, we present a heuristic for inducing structures of Gaussian Bayesian networks using L1-regularization as a filter. El pragmatismo es la principal motivación de la regularización. Podemos entender la regularización como una modificación del estimador de máxima verosimilitud, de tal manera que se pueda dar una respuesta cuando la configuración del problema es inestable. A modo de ejemplo, podemos mencionar el ajuste de modelos paramétricos o no paramétricos cuando hay más parámetros que casos en el conjunto de datos, o la estimación de grandes matrices de covarianzas. Se suele recurrir a la regularización, además, para mejorar el compromiso sesgo-varianza en una estimación. Por tanto, la definición de regularización es muy general y, aunque la introducción de una función de penalización es probablemente el método más popular, éste es sólo uno de entre varias posibilidades. En esta tesis se ha trabajado en aplicaciones de regularización para obtener representaciones dispersas, donde sólo se usa un subconjunto de las entradas. En particular, la regularización L1 juega un papel clave en la búsqueda de dicha dispersión. La mayor parte de las contribuciones presentadas en la tesis giran alrededor de la regularización L1, aunque también se exploran otras formas de regularización (que igualmente persiguen un modelo disperso). Además de presentar una revisión de la regularización L1 y sus aplicaciones en estadística y aprendizaje de máquina, se ha desarrollado metodología para regresión, clasificación supervisada y aprendizaje de estructura en modelos gráficos. Dentro de la regresión, se ha trabajado principalmente en métodos de regresión local, proponiendo técnicas de diseño del kernel que sean adecuadas a configuraciones de alta dimensionalidad y funciones de regresión dispersas. También se presenta una aplicación de las técnicas de regresión regularizada para modelar la respuesta de neuronas reales. Los avances en clasificación supervisada tratan, por una parte, con el uso de regularización para obtener un clasificador naive Bayes y, por otra parte, con el desarrollo de un algoritmo que usa regularización por grupos de una manera eficiente y que se ha aplicado al diseño de interfaces cerebromáquina. Finalmente, se presenta una heurística para inducir la estructura de redes Bayesianas Gaussianas usando regularización L1 a modo de filtro.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Background:Malignancies arising in the large bowel cause the second largest number of deaths from cancer in the Western World. Despite progresses made during the last decades, colorectal cancer remains one of the most frequent and deadly neoplasias in the western countries. Methods: A genomic study of human colorectal cancer has been carried out on a total of 31 tumoral samples, corresponding to different stages of the disease, and 33 non-tumoral samples. The study was carried out by hybridisation of the tumour samples against a reference pool of non-tumoral samples using Agilent Human 1A 60-mer oligo microarrays. The results obtained were validated by qRT-PCR. In the subsequent bioinformatics analysis, gene networks by means of Bayesian classifiers, variable selection and bootstrap resampling were built. The consensus among all the induced models produced a hierarchy of dependences and, thus, of variables. Results: After an exhaustive process of pre-processing to ensure data quality--lost values imputation, probes quality, data smoothing and intraclass variability filtering--the final dataset comprised a total of 8, 104 probes. Next, a supervised classification approach and data analysis was carried out to obtain the most relevant genes. Two of them are directly involved in cancer progression and in particular in colorectal cancer. Finally, a supervised classifier was induced to classify new unseen samples. Conclusions: We have developed a tentative model for the diagnosis of colorectal cancer based on a biomarker panel. Our results indicate that the gene profile described herein can discriminate between non-cancerous and cancerous samples with 94.45% accuracy using different supervised classifiers (AUC values in the range of 0.997 and 0.955).

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The present work covers the first validation efforts of the EVA Tracking System for the assessment of minimally invasive surgery (MIS) psychomotor skills. Instrument movements were recorded for 42 surgeons (4 expert, 22 residents, 16 novice medical students) and analyzed for a box trainer peg transfer task. Construct validation was established for 7/9 motion analysis parameters (MAPs). Concurrent validation was determined for 8/9 MAPs against the TrEndo Tracking System. Finally, automatic determination of surgical proficiency based on the MAPs was sought by 3 different approaches to supervised classification (LDA, SVM, ANFIS), with accuracy results of 61.9%, 83.3% and 80.9% respectively. Results not only reflect on the validation of EVA for skills? assessment, but also on the relevance of motion analysis of instruments in the determination of surgical competence.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

One of the main challenges for intelligent vehicles is the capability of detecting other vehicles in their environment, which constitute the main source of accidents. Specifically, many methods have been proposed in the literature for video-based vehicle detection. Most of them perform supervised classification using some appearance-related feature, in particular, symmetry has been extensively utilized. However, an in-depth analysis of the classification power of this feature is missing. As a first contribution of this paper, a thorough study of the classification performance of symmetry is presented within a Bayesian decision framework. This study reveals that the performance of symmetry-based classification is very limited. Therefore, as a second contribution, a new gradient-based descriptor is proposed for vehicle detection. This descriptor exploits the known rectangular structure of vehicle rears within a Histogram of Gradients (HOG)-based framework. Experiments show that the proposed descriptor outperforms largely symmetry as a feature for vehicle verification, achieving classification rates over 90%.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this paper, we analyze the performance of several well-known pattern recognition and dimensionality reduction techniques when applied to mass-spectrometry data for odor biometric identification. Motivated by the successful results of previous works capturing the odor from other parts of the body, this work attempts to evaluate the feasibility of identifying people by the odor emanated from the hands. By formulating this task according to a machine learning scheme, the problem is identified with a small-sample-size supervised classification problem in which the input data is formed by mass spectrograms from the hand odor of 13 subjects captured in different sessions. The high dimensionality of the data makes it necessary to apply feature selection and extraction techniques together with a simple classifier in order to improve the generalization capabilities of the model. Our experimental results achieve recognition rates over 85% which reveals that there exists discriminatory information in the hand odor and points at body odor as a promising biometric identifier.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This work proposes an optimization of a semi-supervised Change Detection methodology based on a combination of Change Indices (CI) derived from an image multitemporal data set. For this purpose, SPOT 5 Panchromatic images with 2.5 m spatial resolution have been used, from which three Change Indices have been calculated. Two of them are usually known indices; however the third one has been derived considering the Kullbak-Leibler divergence. Then, these three indices have been combined forming a multiband image that has been used in as input for a Support Vector Machine (SVM) classifier where four different discriminant functions have been tested in order to differentiate between change and no_change categories. The performance of the suggested procedure has been assessed applying different quality measures, reaching in each case highly satisfactory values. These results have demonstrated that the simultaneous combination of basic change indices with others more sophisticated like the Kullback-Leibler distance, and the application of non-parametric discriminant functions like those employees in the SVM method, allows solving efficiently a change detection problem.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

El objetivo principal de esta tesis doctoral es profundizar en el análisis y diseño de un sistema inteligente para la predicción y control del acabado superficial en un proceso de fresado a alta velocidad, basado fundamentalmente en clasificadores Bayesianos, con el prop´osito de desarrollar una metodolog´ıa que facilite el diseño de este tipo de sistemas. El sistema, cuyo propósito es posibilitar la predicción y control de la rugosidad superficial, se compone de un modelo aprendido a partir de datos experimentales con redes Bayesianas, que ayudar´a a comprender los procesos dinámicos involucrados en el mecanizado y las interacciones entre las variables relevantes. Dado que las redes neuronales artificiales son modelos ampliamente utilizados en procesos de corte de materiales, también se incluye un modelo para fresado usándolas, donde se introdujo la geometría y la dureza del material como variables novedosas hasta ahora no estudiadas en este contexto. Por lo tanto, una importante contribución en esta tesis son estos dos modelos para la predicción de la rugosidad superficial, que se comparan con respecto a diferentes aspectos: la influencia de las nuevas variables, los indicadores de evaluación del desempeño, interpretabilidad. Uno de los principales problemas en la modelización con clasificadores Bayesianos es la comprensión de las enormes tablas de probabilidad a posteriori producidas. Introducimos un m´etodo de explicación que genera un conjunto de reglas obtenidas de árboles de decisión. Estos árboles son inducidos a partir de un conjunto de datos simulados generados de las probabilidades a posteriori de la variable clase, calculadas con la red Bayesiana aprendida a partir de un conjunto de datos de entrenamiento. Por último, contribuimos en el campo multiobjetivo en el caso de que algunos de los objetivos no se puedan cuantificar en números reales, sino como funciones en intervalo de valores. Esto ocurre a menudo en aplicaciones de aprendizaje automático, especialmente las basadas en clasificación supervisada. En concreto, se extienden las ideas de dominancia y frontera de Pareto a esta situación. Su aplicación a los estudios de predicción de la rugosidad superficial en el caso de maximizar al mismo tiempo la sensibilidad y la especificidad del clasificador inducido de la red Bayesiana, y no solo maximizar la tasa de clasificación correcta. Los intervalos de estos dos objetivos provienen de un m´etodo de estimación honesta de ambos objetivos, como e.g. validación cruzada en k rodajas o bootstrap.---ABSTRACT---The main objective of this PhD Thesis is to go more deeply into the analysis and design of an intelligent system for surface roughness prediction and control in the end-milling machining process, based fundamentally on Bayesian network classifiers, with the aim of developing a methodology that makes easier the design of this type of systems. The system, whose purpose is to make possible the surface roughness prediction and control, consists of a model learnt from experimental data with the aid of Bayesian networks, that will help to understand the dynamic processes involved in the machining and the interactions among the relevant variables. Since artificial neural networks are models widely used in material cutting proceses, we include also an end-milling model using them, where the geometry and hardness of the piecework are introduced as novel variables not studied so far within this context. Thus, an important contribution in this thesis is these two models for surface roughness prediction, that are then compared with respecto to different aspects: influence of the new variables, performance evaluation metrics, interpretability. One of the main problems with Bayesian classifier-based modelling is the understanding of the enormous posterior probabilitiy tables produced. We introduce an explanation method that generates a set of rules obtained from decision trees. Such trees are induced from a simulated data set generated from the posterior probabilities of the class variable, calculated with the Bayesian network learned from a training data set. Finally, we contribute in the multi-objective field in the case that some of the objectives cannot be quantified as real numbers but as interval-valued functions. This often occurs in machine learning applications, especially those based on supervised classification. Specifically, the dominance and Pareto front ideas are extended to this setting. Its application to the surface roughness prediction studies the case of maximizing simultaneously the sensitivity and specificity of the induced Bayesian network classifier, rather than only maximizing the correct classification rate. Intervals in these two objectives come from a honest estimation method of both objectives, like e.g. k-fold cross-validation or bootstrap.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Video analytics play a critical role in most recent traffic monitoring and driver assistance systems. In this context, the correct detection and classification of surrounding vehicles through image analysis has been the focus of extensive research in the last years. Most of the pieces of work reported for image-based vehicle verification make use of supervised classification approaches and resort to techniques, such as histograms of oriented gradients (HOG), principal component analysis (PCA), and Gabor filters, among others. Unfortunately, existing approaches are lacking in two respects: first, comparison between methods using a common body of work has not been addressed; second, no study of the combination potentiality of popular features for vehicle classification has been reported. In this study the performance of the different techniques is first reviewed and compared using a common public database. Then, the combination capabilities of these techniques are explored and a methodology is presented for the fusion of classifiers built upon them, taking into account also the vehicle pose. The study unveils the limitations of single-feature based classification and makes clear that fusion of classifiers is highly beneficial for vehicle verification.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The semantic localization problem in robotics consists in determining the place where a robot is located by means of semantic categories. The problem is usually addressed as a supervised classification process, where input data correspond to robot perceptions while classes to semantic categories, like kitchen or corridor. In this paper we propose a framework, implemented in the PCL library, which provides a set of valuable tools to easily develop and evaluate semantic localization systems. The implementation includes the generation of 3D global descriptors following a Bag-of-Words approach. This allows the generation of fixed-dimensionality descriptors from any type of keypoint detector and feature extractor combinations. The framework has been designed, structured and implemented to be easily extended with different keypoint detectors, feature extractors as well as classification models. The proposed framework has also been used to evaluate the performance of a set of already implemented descriptors, when used as input for a specific semantic localization system. The obtained results are discussed paying special attention to the internal parameters of the BoW descriptor generation process. Moreover, we also review the combination of some keypoint detectors with different 3D descriptor generation techniques.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Government agencies responsible for riparian environments are assessing the combined utility of field survey and remote sensing for mapping and monitoring indicators of riparian zone condition. The objective of this work was to compare the Tropical Rapid Appraisal of Riparian Condition (TRARC) method to a satellite image based approach. TRARC was developed for rapid assessment of the environmental condition of savanna riparian zones. The comparison assessed mapping accuracy, representativeness of TRARC assessment, cost-effectiveness, and suitability for multi-temporal analysis. Two multi-spectral QuickBird images captured in 2004 and 2005 and coincident field data covering sections of the Daly River in the Northern Territory, Australia were used in this work. Both field and image data were processed to map riparian health indicators (RHIs) including percentage canopy cover, organic litter, canopy continuity, stream bank stability, and extent of tree clearing. Spectral vegetation indices, image segmentation and supervised classification were used to produce RHI maps. QuickBird image data were used to examine if the spatial distribution of TRARC transects provided a representative sample of ground based RHI measurements. Results showed that TRARC transects were required to cover at least 3% of the study area to obtain a representative sample. The mapping accuracy and costs of the image based approach were compared to those of the ground based TRARC approach. Results proved that TRARC was more cost-effective at smaller scales (1-100km), while image based assessment becomes more feasible at regional scales (100-1000km). Finally, the ability to use both the image and field based approaches for multi-temporal analysis of RHIs was assessed. Change detection analysis demonstrated that image data can provide detailed information on gradual change, while the TRARC method was only able to identify more gross scale changes. In conclusion, results from both methods were considered to complement each other if used at appropriate spatial scales.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Quantitative structure–activity relationship (QSAR) analysis is a main cornerstone of modern informatic disciplines. Predictive computational models, based on QSAR technology, of peptide-major histocompatibility complex (MHC) binding affinity have now become a vital component of modern day computational immunovaccinology. Historically, such approaches have been built around semi-qualitative, classification methods, but these are now giving way to quantitative regression methods. The additive method, an established immunoinformatics technique for the quantitative prediction of peptide–protein affinity, was used here to identify the sequence dependence of peptide binding specificity for three mouse class I MHC alleles: H2–Db, H2–Kb and H2–Kk. As we show, in terms of reliability the resulting models represent a significant advance on existing methods. They can be used for the accurate prediction of T-cell epitopes and are freely available online (http://www.jenner.ac.uk/MHCPred).