962 resultados para Semi-infinite linear programming


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pós-graduação em Matemática em Rede Nacional - IBILCE

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pós-graduação em Agronomia (Irrigação e Drenagem) - FCA

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work addresses the solution to the problem of robust model predictive control (MPC) of systems with model uncertainty. The case of zone control of multi-variable stable systems with multiple time delays is considered. The usual approach of dealing with this kind of problem is through the inclusion of non-linear cost constraint in the control problem. The control action is then obtained at each sampling time as the solution to a non-linear programming (NLP) problem that for high-order systems can be computationally expensive. Here, the robust MPC problem is formulated as a linear matrix inequality problem that can be solved in real time with a fraction of the computer effort. The proposed approach is compared with the conventional robust MPC and tested through the simulation of a reactor system of the process industry.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

[EN] 3D BEM-FEM coupling model is used to study the dynamic behavior of piled foundations in elastic layered soils in presenceof a rigid bedrock. Piles are modelled by FEM as beams according to the Bernoulli hpothesis, and every layer of the soil is modelled by BEM as a cointinuum, semi-infinite, isotropic, homogeneous, linear, viscoelastic medium.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

[EN] This paper shows a BEM-FEM coupling model for the time harmonic dynamic analysis of piles and pile groups embeddes in an elastic half-space. Piles are modelled using Finite Elements (FEM) as a beam according to the Bernoulli hypothesis, while the soil modelled using  Boundary Elements (BEM) as a continuum, semi-infinite, isotropic, homogeneous or zoned homogeneous, linear, viscoelastic medium.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mixed integer programming is up today one of the most widely used techniques for dealing with hard optimization problems. On the one side, many practical optimization problems arising from real-world applications (such as, e.g., scheduling, project planning, transportation, telecommunications, economics and finance, timetabling, etc) can be easily and effectively formulated as Mixed Integer linear Programs (MIPs). On the other hand, 50 and more years of intensive research has dramatically improved on the capability of the current generation of MIP solvers to tackle hard problems in practice. However, many questions are still open and not fully understood, and the mixed integer programming community is still more than active in trying to answer some of these questions. As a consequence, a huge number of papers are continuously developed and new intriguing questions arise every year. When dealing with MIPs, we have to distinguish between two different scenarios. The first one happens when we are asked to handle a general MIP and we cannot assume any special structure for the given problem. In this case, a Linear Programming (LP) relaxation and some integrality requirements are all we have for tackling the problem, and we are ``forced" to use some general purpose techniques. The second one happens when mixed integer programming is used to address a somehow structured problem. In this context, polyhedral analysis and other theoretical and practical considerations are typically exploited to devise some special purpose techniques. This thesis tries to give some insights in both the above mentioned situations. The first part of the work is focused on general purpose cutting planes, which are probably the key ingredient behind the success of the current generation of MIP solvers. Chapter 1 presents a quick overview of the main ingredients of a branch-and-cut algorithm, while Chapter 2 recalls some results from the literature in the context of disjunctive cuts and their connections with Gomory mixed integer cuts. Chapter 3 presents a theoretical and computational investigation of disjunctive cuts. In particular, we analyze the connections between different normalization conditions (i.e., conditions to truncate the cone associated with disjunctive cutting planes) and other crucial aspects as cut rank, cut density and cut strength. We give a theoretical characterization of weak rays of the disjunctive cone that lead to dominated cuts, and propose a practical method to possibly strengthen those cuts arising from such weak extremal solution. Further, we point out how redundant constraints can affect the quality of the generated disjunctive cuts, and discuss possible ways to cope with them. Finally, Chapter 4 presents some preliminary ideas in the context of multiple-row cuts. Very recently, a series of papers have brought the attention to the possibility of generating cuts using more than one row of the simplex tableau at a time. Several interesting theoretical results have been presented in this direction, often revisiting and recalling other important results discovered more than 40 years ago. However, is not clear at all how these results can be exploited in practice. As stated, the chapter is a still work-in-progress and simply presents a possible way for generating two-row cuts from the simplex tableau arising from lattice-free triangles and some preliminary computational results. The second part of the thesis is instead focused on the heuristic and exact exploitation of integer programming techniques for hard combinatorial optimization problems in the context of routing applications. Chapters 5 and 6 present an integer linear programming local search algorithm for Vehicle Routing Problems (VRPs). The overall procedure follows a general destroy-and-repair paradigm (i.e., the current solution is first randomly destroyed and then repaired in the attempt of finding a new improved solution) where a class of exponential neighborhoods are iteratively explored by heuristically solving an integer programming formulation through a general purpose MIP solver. Chapters 7 and 8 deal with exact branch-and-cut methods. Chapter 7 presents an extended formulation for the Traveling Salesman Problem with Time Windows (TSPTW), a generalization of the well known TSP where each node must be visited within a given time window. The polyhedral approaches proposed for this problem in the literature typically follow the one which has been proven to be extremely effective in the classical TSP context. Here we present an overall (quite) general idea which is based on a relaxed discretization of time windows. Such an idea leads to a stronger formulation and to stronger valid inequalities which are then separated within the classical branch-and-cut framework. Finally, Chapter 8 addresses the branch-and-cut in the context of Generalized Minimum Spanning Tree Problems (GMSTPs) (i.e., a class of NP-hard generalizations of the classical minimum spanning tree problem). In this chapter, we show how some basic ideas (and, in particular, the usage of general purpose cutting planes) can be useful to improve on branch-and-cut methods proposed in the literature.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A model is developed to represent the activity of a farm using the method of linear programming. Two are the main components of the model, the balance of soil fertility and the livestock nutrition. According to the first, the farm is supposed to have a total requirement of nitrogen, which is to be accomplished either through internal sources (manure) or through external sources (fertilisers). The second component describes the animal husbandry as having a nutritional requirement which must be satisfied through the internal production of arable crops or the acquisition of feed from the market. The farmer is supposed to maximise total net income from the agricultural and the zoo-technical activities by choosing one rotation among those available for climate and acclivity. The perspective of the analysis is one of a short period: the structure of the farm is supposed to be fixed without possibility to change the allocation of permanent crops and the amount of animal husbandry. The model is integrated with an environmental module that describes the role of the farm within the carbon-nitrogen cycle. On the one hand the farm allows storing carbon through the photosynthesis of the plants and the accumulation of carbon in the soil; on the other some activities of the farm emit greenhouse gases into the atmosphere. The model is tested for some representative farms of the Emilia-Romagna region, showing to be capable to give different results for conventional and organic farming and providing first results concerning the different atmospheric impact. Relevant data about the representative farms and the feasible rotations are extracted from the FADN database, with an integration of the coefficients from the literature.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The use of linear programming in various areas has increased with the significant improvement of specialized solvers. Linear programs are used as such to model practical problems, or as subroutines in algorithms such as formal proofs or branch-and-cut frameworks. In many situations a certified answer is needed, for example the guarantee that the linear program is feasible or infeasible, or a provably safe bound on its objective value. Most of the available solvers work with floating-point arithmetic and are thus subject to its shortcomings such as rounding errors or underflow, therefore they can deliver incorrect answers. While adequate for some applications, this is unacceptable for critical applications like flight controlling or nuclear plant management due to the potential catastrophic consequences. We propose a method that gives a certified answer whether a linear program is feasible or infeasible, or returns unknown'. The advantage of our method is that it is reasonably fast and rarely answers unknown'. It works by computing a safe solution that is in some way the best possible in the relative interior of the feasible set. To certify the relative interior, we employ exact arithmetic, whose use is nevertheless limited in general to critical places, allowing us to rnremain computationally efficient. Moreover, when certain conditions are fulfilled, our method is able to deliver a provable bound on the objective value of the linear program. We test our algorithm on typical benchmark sets and obtain higher rates of success compared to previous approaches for this problem, while keeping the running times acceptably small. The computed objective value bounds are in most of the cases very close to the known exact objective values. We prove the usability of the method we developed by additionally employing a variant of it in a different scenario, namely to improve the results of a Satisfiability Modulo Theories solver. Our method is used as a black box in the nodes of a branch-and-bound tree to implement conflict learning based on the certificate of infeasibility for linear programs consisting of subsets of linear constraints. The generated conflict clauses are in general small and give good rnprospects for reducing the search space. Compared to other methods we obtain significant improvements in the running time, especially on the large instances.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Koopman et al. (2014) developed a method to consistently decompose gross exports in value-added terms that accommodate infinite repercussions of international and inter-sector transactions. This provides a better understanding of trade in value added in global value chains than does the conventional gross exports method, which is affected by double-counting problems. However, the new framework is based on monetary input--output (IO) tables and cannot distinguish prices from quantities; thus, it is unable to consider financial adjustments through the exchange market. In this paper, we propose a framework based on a physical IO system, characterized by its linear programming equivalent that can clarify the various complexities relevant to the existing indicators and is proved to be consistent with Koopman's results when the physical decompositions are evaluated in monetary terms. While international monetary tables are typically described in current U.S. dollars, the physical framework can elucidate the impact of price adjustments through the exchange market. An iterative procedure to calculate the exchange rates is proposed, and we also show that the physical framework is also convenient for considering indicators associated with greenhouse gas (GHG) emissions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we present a mixed-integer linear programming model for determining salary-revision matrices for an organization based on that organization?s general strategies. The solution obtained from this model consists of salary increases for each employee; these increases consider the employee?s professional performance, salary level relative to peers within the organization, and professional group. In addition to budget constraints, we modeled other elements typical of compensation systems, such as equity and justice. Red Eléctrica de España (REE), the transmission agent and operator of the Spanish electricity system, used the model to revise its 2010 and 2011 salary policies, and achieved results that were aligned with the company strategy. REE incorporated the model into the salary management module within its information system, and plans to continue to use the model in revisions of the module.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

O objeto deste trabalho é a análise do aproveitamento múltiplo do reservatório de Barra Bonita, localizado na confluência entre os rios Piracicaba e Tietê, no estado de São Paulo e pertencente ao chamado sistema Tietê-Paraná. Será realizada a otimização da operação do reservatório, através de programação linear, com o objetivo de aumentar a geração de energia elétrica, através da maximização da vazão turbinada. Em seguida, a partir dos resultados da otimização da geração de energia, serão utilizadas técnicas de simulação computacional, para se obter índices de desempenho conhecidos como confiabilidade, resiliência e vulnerabilidade, além de outros fornecidos pelo próprio modelo de simulação a ser utilizado. Estes índices auxiliam a avaliação da freqüência, magnitude e duração dos possíveis conflitos existentes. Serão analisados os possíveis conflitos entre a navegação, o armazenamento no reservatório, a geração de energia e a ocorrência de enchentes na cidade de Barra Bonita, localizada a jusante da barragem.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Este trabalho busca aplicar técnicas de confiabilidade ao problema de grupo de estacas utilizadas como fundação de estruturas correntes. Para isso, lança-se mão de um modelo tridimensional de interação estaca-solo onde estão presentes o Método dos Elementos de Contorno (MEC) e o método dos Elementos Finitos (MEF) que atuam de forma acoplada. O MEC, com as soluções fundamentais de Mindlin (meio semi-infinito, homogêneo, isotrópico e elástico-linear é utiliza), é utilizado para modelar o solo. Já o MEF é utilizado para modelar as estacas. Definido o modelo de funcionamento estrutural das estacas, parte-se para a aplicação de métodos trazidos da confiabilidade estrutural para avaliação da adequabilidade em relação aos estados limite de serviço e estados limites últimos. Os métodos de confiabilidade utilizados foram o Método de Monte Carlo, o método FOSM (First-Order Second-Moment) e o método FORM (First-Order Reliability Method).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mathematical programming can be used for the optimal design of shell-and-tube heat exchangers (STHEs). This paper proposes a mixed integer non-linear programming (MINLP) model for the design of STHEs, following rigorously the standards of the Tubular Exchanger Manufacturers Association (TEMA). Bell–Delaware Method is used for the shell-side calculations. This approach produces a large and non-convex model that cannot be solved to global optimality with the current state of the art solvers. Notwithstanding, it is proposed to perform a sequential optimization approach of partial objective targets through the division of the problem into sets of related equations that are easier to solve. For each one of these problems a heuristic objective function is selected based on the physical behavior of the problem. The global optimal solution of the original problem cannot be ensured even in the case in which each of the sub-problems is solved to global optimality, but at least a very good solution is always guaranteed. Three cases extracted from the literature were studied. The results showed that in all cases the values obtained using the proposed MINLP model containing multiple objective functions improved the values presented in the literature.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we examine multi-objective linear programming problems in the face of data uncertainty both in the objective function and the constraints. First, we derive a formula for the radius of robust feasibility guaranteeing constraint feasibility for all possible scenarios within a specified uncertainty set under affine data parametrization. We then present numerically tractable optimality conditions for minmax robust weakly efficient solutions, i.e., the weakly efficient solutions of the robust counterpart. We also consider highly robust weakly efficient solutions, i.e., robust feasible solutions which are weakly efficient for any possible instance of the objective matrix within a specified uncertainty set, providing lower bounds for the radius of highly robust efficiency guaranteeing the existence of this type of solutions under affine and rank-1 objective data uncertainty. Finally, we provide numerically tractable optimality conditions for highly robust weakly efficient solutions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bibliography: leaves [87]-[88]