970 resultados para Semantics - Data processing
Resumo:
This paper reports on an innovative approach that aims to reduce information management costs in data-intensive and cognitively-complex biomedical environments. Recognizing the importance of prominent high-performance computing paradigms and large data processing technologies as well as collaboration support systems to remedy data-intensive issues, it adopts a hybrid approach by building on the synergy of these technologies. The proposed approach provides innovative Web-based workbenches that integrate and orchestrate a set of interoperable services that reduce the data-intensiveness and complexity overload at critical decision points to a manageable level, thus permitting stakeholders to be more productive and concentrate on creative activities.
Resumo:
A basic requirement of the data acquisition systems used in long pulse fusion experiments is the real time physical events detection in signals. Developing such applications is usually a complex task, so it is necessary to develop a set of hardware and software tools that simplify their implementation. This type of applications can be implemented in ITER using fast controllers. ITER is standardizing the architectures to be used for fast controller implementation. Until now the standards chosen are PXIe architectures (based on PCIe) for the hardware and EPICS middleware for the software. This work presents the methodology for implementing data acquisition and pre-processing using FPGA-based DAQ cards and how to integrate these in fast controllers using EPICS.
Resumo:
The electrical power distribution and commercialization scenario is evolving worldwide, and electricity companies, faced with the challenge of new information requirements, are demanding IT solutions to deal with the smart monitoring of power networks. Two main challenges arise from data management and smart monitoring of power networks: real-time data acquisition and big data processing over short time periods. We present a solution in the form of a system architecture that conveys real time issues and has the capacity for big data management.
Resumo:
Following the processing and validation of JEFF-3.1 performed in 2006 and presented in ND2007, and as a consequence of the latest updated of this library (JEFF-3.1.2) in February 2012, a new processing and validation of JEFF-3.1.2 cross section library is presented in this paper. The processed library in ACE format at ten different temperatures was generated with NJOY-99.364 nuclear data processing system. In addition, NJOY-99 inputs are provided to generate PENDF, GENDF, MATXSR and BOXER formats. The library has undergone strict QA procedures, being compared with other available libraries (e.g. ENDF/B-VII.1) and processing codes as PREPRO-2000 codes. A set of 119 criticality benchmark experiments taken from ICSBEP-2010 has been used for validation purposes.
Resumo:
Subsidence is a natural hazard that affects wide areas in the world causing important economic costs annually. This phenomenon has occurred in the metropolitan area of Murcia City (SE Spain) as a result of groundwater overexploitation. In this work aquifer system subsidence is investigated using an advanced differential SAR interferometry remote sensing technique (A-DInSAR) called Stable Point Network (SPN). The SPN derived displacement results, mainly the velocity displacement maps and the time series of the displacement, reveal that in the period 2004–2008 the rate of subsidence in Murcia metropolitan area doubled with respect to the previous period from 1995 to 2005. The acceleration of the deformation phenomenon is explained by the drought period started in 2006. The comparison of the temporal evolution of the displacements measured with the extensometers and the SPN technique shows an average absolute error of 3.9±3.8 mm. Finally, results from a finite element model developed to simulate the recorded time history subsidence from known water table height changes compares well with the SPN displacement time series estimations. This result demonstrates the potential of A-DInSAR techniques to validate subsidence prediction models as an alternative to using instrumental ground based techniques for validation.
Resumo:
3D sensors provides valuable information for mobile robotic tasks like scene classification or object recognition, but these sensors often produce noisy data that makes impossible applying classical keypoint detection and feature extraction techniques. Therefore, noise removal and downsampling have become essential steps in 3D data processing. In this work, we propose the use of a 3D filtering and down-sampling technique based on a Growing Neural Gas (GNG) network. GNG method is able to deal with outliers presents in the input data. These features allows to represent 3D spaces, obtaining an induced Delaunay Triangulation of the input space. Experiments show how the state-of-the-art keypoint detectors improve their performance using GNG output representation as input data. Descriptors extracted on improved keypoints perform better matching in robotics applications as 3D scene registration.
Resumo:
A new methodology is proposed to produce subsidence activity maps based on the geostatistical analysis of persistent scatterer interferometry (PSI) data. PSI displacement measurements are interpolated based on conditional Sequential Gaussian Simulation (SGS) to calculate multiple equiprobable realizations of subsidence. The result from this process is a series of interpolated subsidence values, with an estimation of the spatial variability and a confidence level on the interpolation. These maps complement the PSI displacement map, improving the identification of wide subsiding areas at a regional scale. At a local scale, they can be used to identify buildings susceptible to suffer subsidence related damages. In order to do so, it is necessary to calculate the maximum differential settlement and the maximum angular distortion for each building of the study area. Based on PSI-derived parameters those buildings in which the serviceability limit state has been exceeded, and where in situ forensic analysis should be made, can be automatically identified. This methodology has been tested in the city of Orihuela (SE Spain) for the study of historical buildings damaged during the last two decades by subsidence due to aquifer overexploitation. The qualitative evaluation of the results from the methodology carried out in buildings where damages have been reported shows a success rate of 100%.
Resumo:
The Santas Justa and Rufina Gothic church (fourteenth century) has suffered several physical, mechanical, chemical, and biochemical types of pathologies along its history: rock alveolization, efflorescence, biological activity, and capillary ascent of groundwater. However, during the last two decades, a new phenomenon has seriously affected the church: ground subsidence caused by aquifer overexploitation. Subsidence is a process that affects the whole Vega Baja of the Segura River basin and consists of gradual sinking in the ground surface caused by soil consolidation due to a pore pressure decrease. This phenomenon has been studied by differential synthetic aperture radar interferometry techniques, which illustrate settlements up to 100 mm for the 1993–2009 period for the whole Orihuela city. Although no differential synthetic aperture radar interferometry information is available for the church due to the loss of interferometric coherence, the spatial analysis of nearby deformation combined with fieldwork has advanced the current understanding on the mechanisms that affect the Santas Justa and Rufina church. These results show the potential interest and the limitations of using this remote sensing technique as a complementary tool for the forensic analysis of building structures.
Resumo:
Even when data repositories exhibit near perfect data quality, users may formulate queries that do not correspond to the information requested. Users’ poor information retrieval performance may arise from either problems understanding of the data models that represent the real world systems, or their query skills. This research focuses on users’ understanding of the data structures, i.e., their ability to map the information request and the data model. The Bunge-Wand-Weber ontology was used to formulate three sets of hypotheses. Two laboratory experiments (one using a small data model and one using a larger data model) tested the effect of ontological clarity on users’ performance when undertaking component, record, and aggregate level tasks. The results indicate for the hypotheses associated with different representations but equivalent semantics that parsimonious data model participants performed better for component level tasks but that ontologically clearer data model participants performed better for record and aggregate level tasks.
Resumo:
This dissertation develops a new mathematical approach that overcomes the effect of a data processing phenomenon known as “histogram binning” inherent to flow cytometry data. A real-time procedure is introduced to prove the effectiveness and fast implementation of such an approach on real-world data. The histogram binning effect is a dilemma posed by two seemingly antagonistic developments: (1) flow cytometry data in its histogram form is extended in its dynamic range to improve its analysis and interpretation, and (2) the inevitable dynamic range extension introduces an unwelcome side effect, the binning effect, which skews the statistics of the data, undermining as a consequence the accuracy of the analysis and the eventual interpretation of the data. ^ Researchers in the field contended with such a dilemma for many years, resorting either to hardware approaches that are rather costly with inherent calibration and noise effects; or have developed software techniques based on filtering the binning effect but without successfully preserving the statistical content of the original data. ^ The mathematical approach introduced in this dissertation is so appealing that a patent application has been filed. The contribution of this dissertation is an incremental scientific innovation based on a mathematical framework that will allow researchers in the field of flow cytometry to improve the interpretation of data knowing that its statistical meaning has been faithfully preserved for its optimized analysis. Furthermore, with the same mathematical foundation, proof of the origin of such an inherent artifact is provided. ^ These results are unique in that new mathematical derivations are established to define and solve the critical problem of the binning effect faced at the experimental assessment level, providing a data platform that preserves its statistical content. ^ In addition, a novel method for accumulating the log-transformed data was developed. This new method uses the properties of the transformation of statistical distributions to accumulate the output histogram in a non-integer and multi-channel fashion. Although the mathematics of this new mapping technique seem intricate, the concise nature of the derivations allow for an implementation procedure that lends itself to a real-time implementation using lookup tables, a task that is also introduced in this dissertation. ^
Resumo:
This dissertation develops a new mathematical approach that overcomes the effect of a data processing phenomenon known as "histogram binning" inherent to flow cytometry data. A real-time procedure is introduced to prove the effectiveness and fast implementation of such an approach on real-world data. The histogram binning effect is a dilemma posed by two seemingly antagonistic developments: (1) flow cytometry data in its histogram form is extended in its dynamic range to improve its analysis and interpretation, and (2) the inevitable dynamic range extension introduces an unwelcome side effect, the binning effect, which skews the statistics of the data, undermining as a consequence the accuracy of the analysis and the eventual interpretation of the data. Researchers in the field contended with such a dilemma for many years, resorting either to hardware approaches that are rather costly with inherent calibration and noise effects; or have developed software techniques based on filtering the binning effect but without successfully preserving the statistical content of the original data. The mathematical approach introduced in this dissertation is so appealing that a patent application has been filed. The contribution of this dissertation is an incremental scientific innovation based on a mathematical framework that will allow researchers in the field of flow cytometry to improve the interpretation of data knowing that its statistical meaning has been faithfully preserved for its optimized analysis. Furthermore, with the same mathematical foundation, proof of the origin of such an inherent artifact is provided. These results are unique in that new mathematical derivations are established to define and solve the critical problem of the binning effect faced at the experimental assessment level, providing a data platform that preserves its statistical content. In addition, a novel method for accumulating the log-transformed data was developed. This new method uses the properties of the transformation of statistical distributions to accumulate the output histogram in a non-integer and multi-channel fashion. Although the mathematics of this new mapping technique seem intricate, the concise nature of the derivations allow for an implementation procedure that lends itself to a real-time implementation using lookup tables, a task that is also introduced in this dissertation.
Resumo:
This paper is part of a special issue of Applied Geochemistry focusing on reliable applications of compositional multivariate statistical methods. This study outlines the application of compositional data analysis (CoDa) to calibration of geochemical data and multivariate statistical modelling of geochemistry and grain-size data from a set of Holocene sedimentary cores from the Ganges-Brahmaputra (G-B) delta. Over the last two decades, understanding near-continuous records of sedimentary sequences has required the use of core-scanning X-ray fluorescence (XRF) spectrometry, for both terrestrial and marine sedimentary sequences. Initial XRF data are generally unusable in ‘raw-format’, requiring data processing in order to remove instrument bias, as well as informed sequence interpretation. The applicability of these conventional calibration equations to core-scanning XRF data are further limited by the constraints posed by unknown measurement geometry and specimen homogeneity, as well as matrix effects. Log-ratio based calibration schemes have been developed and applied to clastic sedimentary sequences focusing mainly on energy dispersive-XRF (ED-XRF) core-scanning. This study has applied high resolution core-scanning XRF to Holocene sedimentary sequences from the tidal-dominated Indian Sundarbans, (Ganges-Brahmaputra delta plain). The Log-Ratio Calibration Equation (LRCE) was applied to a sub-set of core-scan and conventional ED-XRF data to quantify elemental composition. This provides a robust calibration scheme using reduced major axis regression of log-ratio transformed geochemical data. Through partial least squares (PLS) modelling of geochemical and grain-size data, it is possible to derive robust proxy information for the Sundarbans depositional environment. The application of these techniques to Holocene sedimentary data offers an improved methodological framework for unravelling Holocene sedimentation patterns.
Resumo:
The only method used to date to measure dissolved nitrate concentration (NITRATE) with sensors mounted on profiling floats is based on the absorption of light at ultraviolet wavelengths by nitrate ion (Johnson and Coletti, 2002; Johnson et al., 2010; 2013; D’Ortenzio et al., 2012). Nitrate has a modest UV absorption band with a peak near 210 nm, which overlaps with the stronger absorption band of bromide, which has a peak near 200 nm. In addition, there is a much weaker absorption due to dissolved organic matter and light scattering by particles (Ogura and Hanya, 1966). The UV spectrum thus consists of three components, bromide, nitrate and a background due to organics and particles. The background also includes thermal effects on the instrument and slow drift. All of these latter effects (organics, particles, thermal effects and drift) tend to be smooth spectra that combine to form an absorption spectrum that is linear in wavelength over relatively short wavelength spans. If the light absorption spectrum is measured in the wavelength range around 217 to 240 nm (the exact range is a bit of a decision by the operator), then the nitrate concentration can be determined. Two different instruments based on the same optical principles are in use for this purpose. The In Situ Ultraviolet Spectrophotometer (ISUS) built at MBARI or at Satlantic has been mounted inside the pressure hull of a Teledyne/Webb Research APEX and NKE Provor profiling floats and the optics penetrate through the upper end cap into the water. The Satlantic Submersible Ultraviolet Nitrate Analyzer (SUNA) is placed on the outside of APEX, Provor, and Navis profiling floats in its own pressure housing and is connected to the float through an underwater cable that provides power and communications. Power, communications between the float controller and the sensor, and data processing requirements are essentially the same for both ISUS and SUNA. There are several possible algorithms that can be used for the deconvolution of nitrate concentration from the observed UV absorption spectrum (Johnson and Coletti, 2002; Arai et al., 2008; Sakamoto et al., 2009; Zielinski et al., 2011). In addition, the default algorithm that is available in Satlantic sensors is a proprietary approach, but this is not generally used on profiling floats. There are some tradeoffs in every approach. To date almost all nitrate sensors on profiling floats have used the Temperature Compensated Salinity Subtracted (TCSS) algorithm developed by Sakamoto et al. (2009), and this document focuses on that method. It is likely that there will be further algorithm development and it is necessary that the data systems clearly identify the algorithm that is used. It is also desirable that the data system allow for recalculation of prior data sets using new algorithms. To accomplish this, the float must report not just the computed nitrate, but the observed light intensity. Then, the rule to obtain only one NITRATE parameter is, if the spectrum is present then, the NITRATE should be recalculated from the spectrum while the computation of nitrate concentration can also generate useful diagnostics of data quality.
Resumo:
The CATARINA Leg1 cruise was carried out from June 22 to July 24 2012 on board the B/O Sarmiento de Gamboa, under the scientific supervision of Aida Rios (CSIC-IIM). It included the occurrence of the OVIDE hydrological section that was performed in June 2002, 2004, 2006, 2008 and 2010, as part of the CLIVAR program (name A25) ), and under the supervision of Herlé Mercier (CNRSLPO). This section begins near Lisbon (Portugal), runs through the West European Basin and the Iceland Basin, crosses the Reykjanes Ridge (300 miles north of Charlie-Gibbs Fracture Zone, and ends at Cape Hoppe (southeast tip of Greenland). The objective of this repeated hydrological section is to monitor the variability of water mass properties and main current transports in the basin, complementing the international observation array relevant for climate studies. In addition, the Labrador Sea was partly sampled (stations 101-108) between Greenland and Newfoundland, but heavy weather conditions prevented the achievement of the section south of 53°40’N. The quality of CTD data is essential to reach the first objective of the CATARINA project, i.e. to quantify the Meridional Overturning Circulation and water mass ventilation changes and their effect on the changes in the anthropogenic carbon ocean uptake and storage capacity. The CATARINA project was mainly funded by the Spanish Ministry of Sciences and Innovation and co-funded by the Fondo Europeo de Desarrollo Regional. The hydrological OVIDE section includes 95 surface-bottom stations from coast to coast, collecting profiles of temperature, salinity, oxygen and currents, spaced by 2 to 25 Nm depending on the steepness of the topography. The position of the stations closely follows that of OVIDE 2002. In addition, 8 stations were carried out in the Labrador Sea. From the 24 bottles closed at various depth at each stations, samples of sea water are used for salinity and oxygen calibration, and for measurements of biogeochemical components that are not reported here. The data were acquired with a Seabird CTD (SBE911+) and an SBE43 for the dissolved oxygen, belonging to the Spanish UTM group. The software SBE data processing was used after decoding and cleaning the raw data. Then, the LPO matlab toolbox was used to calibrate and bin the data as it was done for the previous OVIDE cruises, using on the one hand pre and post-cruise calibration results for the pressure and temperature sensors (done at Ifremer) and on the other hand the water samples of the 24 bottles of the rosette at each station for the salinity and dissolved oxygen data. A final accuracy of 0.002°C, 0.002 psu and 0.04 ml/l (2.3 umol/kg) was obtained on final profiles of temperature, salinity and dissolved oxygen, compatible with international requirements issued from the WOCE program.
Resumo:
In the digital age, e-health technologies play a pivotal role in the processing of medical information. As personal health data represents sensitive information concerning a data subject, enhancing data protection and security of systems and practices has become a primary concern. In recent years, there has been an increasing interest in the concept of Privacy by Design, which aims at developing a product or a service in a way that it supports privacy principles and rules. In the EU, Article 25 of the General Data Protection Regulation provides a binding obligation of implementing Data Protection by Design technical and organisational measures. This thesis explores how an e-health system could be developed and how data processing activities could be carried out to apply data protection principles and requirements from the design stage. The research attempts to bridge the gap between the legal and technical disciplines on DPbD by providing a set of guidelines for the implementation of the principle. The work is based on literature review, legal and comparative analysis, and investigation of the existing technical solutions and engineering methodologies. The work can be differentiated by theoretical and applied perspectives. First, it critically conducts a legal analysis on the principle of PbD and it studies the DPbD legal obligation and the related provisions. Later, the research contextualises the rule in the health care field by investigating the applicable legal framework for personal health data processing. Moreover, the research focuses on the US legal system by conducting a comparative analysis. Adopting an applied perspective, the research investigates the existing technical methodologies and tools to design data protection and it proposes a set of comprehensive DPbD organisational and technical guidelines for a crucial case study, that is an Electronic Health Record system.