854 resultados para Semantic annotations
Resumo:
Background: Two distinct trends are emerging with respect to how data is shared, collected, and analyzed within the bioinformatics community. First, Linked Data, exposed as SPARQL endpoints, promises to make data easier to collect and integrate by moving towards the harmonization of data syntax, descriptive vocabularies, and identifiers, as well as providing a standardized mechanism for data access. Second, Web Services, often linked together into workflows, normalize data access and create transparent, reproducible scientific methodologies that can, in principle, be re-used and customized to suit new scientific questions. Constructing queries that traverse semantically-rich Linked Data requires substantial expertise, yet traditional RESTful or SOAP Web Services cannot adequately describe the content of a SPARQL endpoint. We propose that content-driven Semantic Web Services can enable facile discovery of Linked Data, independent of their location. Results: We use a well-curated Linked Dataset - OpenLifeData - and utilize its descriptive metadata to automatically configure a series of more than 22,000 Semantic Web Services that expose all of its content via the SADI set of design principles. The OpenLifeData SADI services are discoverable via queries to the SHARE registry and easy to integrate into new or existing bioinformatics workflows and analytical pipelines. We demonstrate the utility of this system through comparison of Web Service-mediated data access with traditional SPARQL, and note that this approach not only simplifies data retrieval, but simultaneously provides protection against resource-intensive queries. Conclusions: We show, through a variety of different clients and examples of varying complexity, that data from the myriad OpenLifeData can be recovered without any need for prior-knowledge of the content or structure of the SPARQL endpoints. We also demonstrate that, via clients such as SHARE, the complexity of federated SPARQL queries is dramatically reduced.
Semantic Discriminant mapping for classification and browsing of remote sensing textures and objects
Resumo:
We present a new approach based on Discriminant Analysis to map a high dimensional image feature space onto a subspace which has the following advantages: 1. each dimension corresponds to a semantic likelihood, 2. an efficient and simple multiclass classifier is proposed and 3. it is low dimensional. This mapping is learnt from a given set of labeled images with a class groundtruth. In the new space a classifier is naturally derived which performs as well as a linear SVM. We will show that projecting images in this new space provides a database browsing tool which is meaningful to the user. Results are presented on a remote sensing database with eight classes, made available online. The output semantic space is a low dimensional feature space which opens perspectives for other recognition tasks. © 2005 IEEE.
Resumo:
Vision based tracking can provide the spatial location of project related entities such as equipment, workers, and materials in a large-scale congested construction site. It tracks entities in a video stream by inferring their motion. To initiate the process, it is required to determine the pixel areas of the entities to be tracked in the following consecutive video frames. For the purpose of fully automating the process, this paper presents an automated way of initializing trackers using Semantic Texton Forests (STFs) method. STFs method performs simultaneously the segmentation of the image and the classification of the segments based on the low-level semantic information and the context information. In this paper, STFs method is tested in the case of wheel loaders recognition. In the experiments, wheel loaders are further divided into several parts such as wheels and body parts to help learn the context information. The results show 79% accuracy of recognizing the pixel areas of the wheel loader. These results signify that STFs method has the potential to automate the initialization process of vision based tracking.
Resumo:
Relative (comparative) attributes are promising for thematic ranking of visual entities, which also aids in recognition tasks. However, attribute rank learning often requires a substantial amount of relational supervision, which is highly tedious, and apparently impractical for real-world applications. In this paper, we introduce the Semantic Transform, which under minimal supervision, adaptively finds a semantic feature space along with a class ordering that is related in the best possible way. Such a semantic space is found for every attribute category. To relate the classes under weak supervision, the class ordering needs to be refined according to a cost function in an iterative procedure. This problem is ideally NP-hard, and we thus propose a constrained search tree formulation for the same. Driven by the adaptive semantic feature space representation, our model achieves the best results to date for all of the tasks of relative, absolute and zero-shot classification on two popular datasets. © 2013 IEEE.
Resumo:
Ontologies play a core role to provide shared knowledge models to semantic-driven applications targeted by Semantic Web. Ontology metrics become an important area because they can help ontology engineers to assess ontology and better control project management and development of ontology based systems, and therefore reduce the risk of project failures. In this paper, we propose a set of ontology cohesion metrics which focuses on measuring (possibly inconsistent) ontologies in the context of dynamic and changing Web. They are: Number of Ontology Partitions (NOP), Number of Minimally Inconsistent Subsets (NMIS) and Average Value of Axiom Inconsistencies (AVAI). These ontology metrics are used to measure ontological semantics rather than ontological structure. They are theoretically validated for ensuring their theoretical soundness, and further empirically validated by a standard test set of debugging ontologies. The related algorithms to compute these ontology metrics also are discussed. These metrics proposed in this paper can be used as a very useful complementarity of existing ontology cohesion metrics.