939 resultados para Semantic Web Services
Resumo:
The robotics is one of the most active areas. We also need to join a large number of disciplines to create robots. With these premises, one problem is the management of information from multiple heterogeneous sources. Each component, hardware or software, produces data with different nature: temporal frequencies, processing needs, size, type, etc. Nowadays, technologies and software engineering paradigms such as service-oriented architectures are applied to solve this problem in other areas. This paper proposes the use of these technologies to implement a robotic control system based on services. This type of system will allow integration and collaborative work of different elements that make up a robotic system.
Resumo:
With the quick advance of web service technologies, end-users can conduct various on-line tasks, such as shopping on-line. Usually, end-users compose a set of services to accomplish a task, and need to enter values to services to invoke the composite services. Quite often, users re-visit websites and use services to perform re-occurring tasks. The users are required to enter the same information into various web services to accomplish such re-occurring tasks. However, repetitively typing the same information into services is a tedious job for end-users. It can negatively impact user experience when an end-user needs to type the re-occurring information repetitively into web services. Recent studies have proposed several approaches to help users fill in values to services automatically. However, prior studies mainly suffer the following drawbacks: (1) limited support of collecting and analyzing user inputs; (2) poor accuracy of filling values to services; (3) not designed for service composition. To overcome the aforementioned drawbacks, we need maximize the reuse of previous user inputs across services and end-users. In this thesis, we introduce our approaches that prevent end-users from entering the same information into repetitive on-line tasks. More specifically, we improve the process of filling out services in the following 4 aspects: First, we investigate the characteristics of input parameters. We propose an ontology-based approach to automatically categorize parameters and fill values to the categorized input parameters. Second, we propose a comprehensive framework that leverages user contexts and usage patterns into the process of filling values to services. Third, we propose an approach for maximizing the value propagation among services and end-users by linking a set of semantically related parameters together and similar end-users. Last, we propose a ranking-based framework that ranks a list of previous user inputs for an input parameter to save a user from unnecessary data entries. Our framework learns and analyzes interactions of user inputs and input parameters to rank user inputs for input parameters under different contexts.
Resumo:
Refinement in software engineering allows a specification to be developed in stages, with design decisions taken at earlier stages constraining the design at later stages. Refinement in complex data models is difficult due to lack of a way of defining constraints, which can be progressively maintained over increasingly detailed refinements. Category theory provides a way of stating wide scale constraints. These constraints lead to a set of design guidelines, which maintain the wide scale constraints under increasing detail. Previous methods of refinement are essentially local, and the proposed method does not interfere very much with these local methods. The result is particularly applicable to semantic web applications, where ontologies provide systems of more or less abstract constraints on systems, which must be implemented and therefore refined by participating systems. With the approach of this paper, the concept of committing to an ontology carries much more force. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Effectively using heterogeneous, distributed information has attracted much research in recent years. Current web services technologies have been used successfully in some non data intensive distributed prototype systems. However, most of them can not work well in data intensive environment. This paper provides an infrastructure layer in data intensive environment for the effectively providing spatial information services by using the web services over the Internet. We extensively investigate and analyze the overhead of web services in data intensive environment, and propose some new optimization techniques which can greatly increase the system’s efficiency. Our experiments show that these techniques are suitable to data intensive environment. Finally, we present the requirement of these techniques for the information of web services over the Internet.
Resumo:
The Environmental Sciences Division within Queensland Environmental Protection Agency works to monitor, assess and model the condition of the environment. The Division has as a legislative responsibility to produce a whole-of-government report every four years dealing environmental conditions and trends in a ”State of the Environment report” (SoE)[1][2][3]. State of Environment Web Service Reporting System is a supplementary web service based SoE reporting tool, which aims to deliver accurate, timely and accessible information on the condition of the environment through web services via Internet [4][5]. This prototype provides a scientific assessment of environmental conditions for a set of environmental indicators. It contains text descriptions and tables, charts and maps with spatiotemporal dimensions to show the impact of certain environmental indicators on our environment. This prototype is a template based indicator system, to which the administrator may add new sql queries for new indicator services without changing the architecture and codes of this template. The benefits are brought through a service-oriented architecture which provides an online query service with seamless integration. In addition, since it uses web service architecture, each individual component within the application can be implemented by using different programming languages and in different operating systems. Although the services showed in this demo are built upon two datasets of regional ecosystem and protection area of Queensland, it will be possible to report on the condition of water, air, land, coastal zones, energy resources, biodiversity, human settlements and natural culture heritage on the fly as well. Figure 1 shows the architecture of the prototype. In the next section, I will discuss the research tasks in the prototype.
Resumo:
The vision presented in this paper and its technical content are a result of close collaboration between several researchers from the University of Queensland, Australia and the SAP Corporate Research Center, Brisbane, Australia. In particular; Dr Wasim Sadiq (SAP), Dr Shazia Sadiq (UQ), and Dr Karsten Schultz (SAP) are the prime contributors to the ideas presented. Also, PhD students Mr Dat Ma Cao and Ms Belinda Carter are involved in the research program. Additionally, the Australian Research Council Discovery Project Scheme and Australian Research Council Linkage Project Scheme support some aspects of research work towards the HMT solution.
Resumo:
We present a vision and a proposal for using Semantic Web technologies in the organic food industry. This is a very knowledge intensive industry at every step from the producer, to the caterer or restauranteur, through to the consumer. There is a crucial need for a concept of environmental audit which would allow the various stake holders to know the full environmental impact of their economic choices. This is a di?erent and parallel form of knowledge to that of price. Semantic Web technologies can be used e?ectively for the calculation and transfer of this type of knowledge (together with other forms of multimedia data) which could contribute considerably to the commercial and educational impact of the organic food industry. We outline how this could be achieved as our essential ob jective is to show how advanced technologies could be used to both reduce ecological impact and increase public awareness.
Resumo:
The main argument of this paper is that Natural Language Processing (NLP) does, and will continue to, underlie the Semantic Web (SW), including its initial construction from unstructured sources like the World Wide Web (WWW), whether its advocates realise this or not. Chiefly, we argue, such NLP activity is the only way up to a defensible notion of meaning at conceptual levels (in the original SW diagram) based on lower level empirical computations over usage. Our aim is definitely not to claim logic-bad, NLP-good in any simple-minded way, but to argue that the SW will be a fascinating interaction of these two methodologies, again like the WWW (which has been basically a field for statistical NLP research) but with deeper content. Only NLP technologies (and chiefly information extraction) will be able to provide the requisite RDF knowledge stores for the SW from existing unstructured text databases in the WWW, and in the vast quantities needed. There is no alternative at this point, since a wholly or mostly hand-crafted SW is also unthinkable, as is a SW built from scratch and without reference to the WWW. We also assume that, whatever the limitations on current SW representational power we have drawn attention to here, the SW will continue to grow in a distributed manner so as to serve the needs of scientists, even if it is not perfect. The WWW has already shown how an imperfect artefact can become indispensable.
Resumo:
Recent developments in service-oriented and distributed computing have created exciting opportunities for the integration of models in service chains to create the Model Web. This offers the potential for orchestrating web data and processing services, in complex chains; a flexible approach which exploits the increased access to products and tools, and the scalability offered by the Web. However, the uncertainty inherent in data and models must be quantified and communicated in an interoperable way, in order for its effects to be effectively assessed as errors propagate through complex automated model chains. We describe a proposed set of tools for handling, characterizing and communicating uncertainty in this context, and show how they can be used to 'uncertainty- enable' Web Services in a model chain. An example implementation is presented, which combines environmental and publicly-contributed data to produce estimates of sea-level air pressure, with estimates of uncertainty which incorporate the effects of model approximation as well as the uncertainty inherent in the observational and derived data.
Resumo:
With the recent rapid growth of the Semantic Web (SW), the processes of searching and querying content that is both massive in scale and heterogeneous have become increasingly challenging. User-friendly interfaces, which can support end users in querying and exploring this novel and diverse, structured information space, are needed to make the vision of the SW a reality. We present a survey on ontology-based Question Answering (QA), which has emerged in recent years to exploit the opportunities offered by structured semantic information on the Web. First, we provide a comprehensive perspective by analyzing the general background and history of the QA research field, from influential works from the artificial intelligence and database communities developed in the 70s and later decades, through open domain QA stimulated by the QA track in TREC since 1999, to the latest commercial semantic QA solutions, before tacking the current state of the art in open user-friendly interfaces for the SW. Second, we examine the potential of this technology to go beyond the current state of the art to support end-users in reusing and querying the SW content. We conclude our review with an outlook for this novel research area, focusing in particular on the R&D directions that need to be pursued to realize the goal of efficient and competent retrieval and integration of answers from large scale, heterogeneous, and continuously evolving semantic sources.
Resumo:
This work investigates the process of selecting, extracting and reorganizing content from Semantic Web information sources, to produce an ontology meeting the specifications of a particular domain and/or task. The process is combined with traditional text-based ontology learning methods to achieve tolerance to knowledge incompleteness. The paper describes the approach and presents experiments in which an ontology was built for a diet evaluation task. Although the example presented concerns the specific case of building a nutritional ontology, the methods employed are domain independent and transferrable to other use cases. © 2011 ACM.
Resumo:
PowerAqua is a Question Answering system, which takes as input a natural language query and is able to return answers drawn from relevant semantic resources found anywhere on the Semantic Web. In this paper we provide two novel contributions: First, we detail a new component of the system, the Triple Similarity Service, which is able to match queries effectively to triples found in different ontologies on the Semantic Web. Second, we provide a first evaluation of the system, which in addition to providing data about PowerAqua's competence, also gives us important insights into the issues related to using the Semantic Web as the target answer set in Question Answering. In particular, we show that, despite the problems related to the noisy and incomplete conceptualizations, which can be found on the Semantic Web, good results can already be obtained.
Resumo:
In this paper we propose algorithms for combining and ranking answers from distributed heterogeneous data sources in the context of a multi-ontology Question Answering task. Our proposal includes a merging algorithm that aggregates, combines and filters ontology-based search results and three different ranking algorithms that sort the final answers according to different criteria such as popularity, confidence and semantic interpretation of results. An experimental evaluation on a large scale corpus indicates improvements in the quality of the search results with respect to a scenario where the merging and ranking algorithms were not applied. These collective methods for merging and ranking allow to answer questions that are distributed across ontologies, while at the same time, they can filter irrelevant answers, fuse similar answers together, and elicit the most accurate answer(s) to a question.