846 resultados para Semantic Publishing, Linked Data, Bibliometrics, Informetrics, Data Retrieval, Citations
Resumo:
Overview of Linked Data in presentation to Royal Academy of Engineering
Resumo:
Wednesday 9th April 2014 Speaker(s): Guus Schreiber Time: 09/04/2014 11:00-11:50 Location: B32/3077 File size: 546Mb Abstract In this talk I will discuss linked data for museums, archives and libraries. This area is known for its knowledge-rich and heterogeneous data landscape. The objects in this field range from old manuscripts to recent TV programs. Challenges in this field include common metadata schema's, inter-linking of the omnipresent vocabularies, cross-collection search strategies, user-generated annotations and object-centric versus event-centric views of data. This work can be seen as part of the rapidly evolving field of digital humanities. Speaker Biography Guus Schreiber Guus is a professor of Intelligent Information Systems at the Department of Computer Science at VU University Amsterdam. Guus’ research interests are mainly in knowledge and ontology engineering with a special interest for applications in the field of cultural heritage. He was one of the key developers of the CommonKADS methodology. Guus acts as chair of W3C groups for Semantic Web standards such as RDF, OWL, SKOS and REFa. His research group is involved in a wide range of national and international research projects. He is now project coordinator of the EU Integrated project No Tube concerned with integration of Web and TV data with the help of semantics and was previously Scientific Director of the EU Network of Excellence “Knowledge Web”.
Resumo:
This is a research discussion about the Hampshire Hub - see http://protohub.net/. The aim is to find out more about the project, and discuss future collaboration and sharing of ideas. Mark Braggins (Hampshire Hub Partnership) will introduce the Hampshire Hub programme, setting out its main objectives, work done to-date, next steps including the Hampshire data store (which will use the PublishMyData linked data platform), and opportunities for University of Southampton to engage with the programme , including the forthcoming Hampshire Hackathons Bill Roberts (Swirrl) will give an overview of the PublishMyData platform, and how it will help deliver the objectives of the Hampshire Hub. He will detail some of the new functionality being added to the platform Steve Peters (DCLG Open Data Communities) will focus on developing a web of data that blends and combines local and national data sources around localities, and common topics/themes. This will include observations on the potential employing emerging new, big data sources to help deliver more effective, better targeted public services. Steve will illustrate this with practical examples of DCLG’s work to publish its own data in a SPARQL end-point, so that it can be used over the web alongside related 3rd party sources. He will share examples of some of the practical challenges, particularly around querying and re-using geographic LinkedData in a federated world of SPARQL end-point.
Resumo:
We describe the CHARMe project, which aims to link climate datasets with publications, user feedback and other items of "commentary metadata". The system will help users learn from previous community experience and select datasets that best suit their needs, as well as providing direct traceability between conclusions and the data that supported them. The project applies the principles of Linked Data and adopts the Open Annotation standard to record and publish commentary information. CHARMe contributes to the emerging landscape of "climate services", which will provide climate data and information to influence policy and decision-making. Although the project focuses on climate science, the technologies and concepts are very general and could be applied to other fields.
Resumo:
The CHARMe project enables the annotation of climate data with key pieces of supporting information that we term “commentary”. Commentary reflects the experience that has built up in the user community, and can help new or less-expert users (such as consultants, SMEs, experts in other fields) to understand and interpret complex data. In the context of global climate services, the CHARMe system will record, retain and disseminate this commentary on climate datasets, and provide a means for feeding back this experience to the data providers. Based on novel linked data techniques and standards, the project has developed a core system, data model and suite of open-source tools to enable this information to be shared, discovered and exploited by the community.
Resumo:
For users of climate services, the ability to quickly determine the datasets that best fit one's needs would be invaluable. The volume, variety and complexity of climate data makes this judgment difficult. The ambition of CHARMe ("Characterization of metadata to enable high-quality climate services") is to give a wider interdisciplinary community access to a range of supporting information, such as journal articles, technical reports or feedback on previous applications of the data. The capture and discovery of this "commentary" information, often created by data users rather than data providers, and currently not linked to the data themselves, has not been significantly addressed previously. CHARMe applies the principles of Linked Data and open web standards to associate, record, search and publish user-derived annotations in a way that can be read both by users and automated systems. Tools have been developed within the CHARMe project that enable annotation capability for data delivery systems already in wide use for discovering climate data. In addition, the project has developed advanced tools for exploring data and commentary in innovative ways, including an interactive data explorer and comparator ("CHARMe Maps") and a tool for correlating climate time series with external "significant events" (e.g. instrument failures or large volcanic eruptions) that affect the data quality. Although the project focuses on climate science, the concepts are general and could be applied to other fields. All CHARMe system software is open-source, released under a liberal licence, permitting future projects to re-use the source code as they wish.
Resumo:
The TCABR data analysis and acquisition system has been upgraded to support a joint research programme using remote participation technologies. The architecture of the new system uses Java language as programming environment. Since application parameters and hardware in a joint experiment are complex with a large variability of components, requirements and specification solutions need to be flexible and modular, independent from operating system and computer architecture. To describe and organize the information on all the components and the connections among them, systems are developed using the extensible Markup Language (XML) technology. The communication between clients and servers uses remote procedure call (RPC) based on the XML (RPC-XML technology). The integration among Java language, XML and RPC-XML technologies allows to develop easily a standard data and communication access layer between users and laboratories using common software libraries and Web application. The libraries allow data retrieval using the same methods for all user laboratories in the joint collaboration, and the Web application allows a simple graphical user interface (GUI) access. The TCABR tokamak team in collaboration with the IPFN (Instituto de Plasmas e Fusao Nuclear, Instituto Superior Tecnico, Universidade Tecnica de Lisboa) is implementing this remote participation technologies. The first version was tested at the Joint Experiment on TCABR (TCABRJE), a Host Laboratory Experiment, organized in cooperation with the IAEA (International Atomic Energy Agency) in the framework of the IAEA Coordinated Research Project (CRP) on ""Joint Research Using Small Tokamaks"". (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Con questa dissertazione di tesi miro ad illustrare i risultati della mia ricerca nel campo del Semantic Publishing, consistenti nello sviluppo di un insieme di metodologie, strumenti e prototipi, uniti allo studio di un caso d‟uso concreto, finalizzati all‟applicazione ed alla focalizzazione di Lenti Semantiche (Semantic Lenses).
Resumo:
Il progetto QRPlaces - Semantic Events, oggetto di questo lavoro, focalizza l’attenzione sull’analisi, la progettazione e l’implementazione di un sistema che sia in grado di modellare i dati, relativi a diversi eventi facenti parte del patrimonio turistico - culturale della Regione Emilia Romagna 1, rendendo evidenti i vantaggi associati ad una rappresentazione formale incentrata sulla Semantica. I dati turistico - culturali sono intesi in questo ambito sia come una rappresentazione di “qualcosa che accade in un certo punto ad un certo momento” (come ad esempio un concerto, una sagra, una raccolta fondi, una rappresentazione teatrale e quant’altro) sia come tradizioni e costumi che costituiscono il patrimonio turistico-culturale e a cui si fa spesso riferimento con il nome di “Cultural Heritage”. Essi hanno la caratteristica intrinseca di richiedere una conoscenza completa di diverse informa- zioni correlata, come informazioni di geo localizzazione relative al luogo fisico che ospita l’evento, dati biografici riferiti all’autore o al soggetto che è presente nell’evento piuttosto che riferirsi ad informazioni che descrivono nel dettaglio tutti gli oggetti, come teatri, cinema, compagnie teatrali che caratterizzano l’evento stesso. Una corretta rappresentazione della conoscenza ad essi legata richiede, pertanto, una modellazione in cui i dati possano essere interconnessi, rivelando un valore informativo che altrimenti resterebbe nascosto. Il lavoro svolto ha avuto lo scopo di realizzare un dataset rispondente alle caratteristiche tipiche del Semantic Web grazie al quale è stato possibile potenziare il circuito di comunicazione e informazione turistica QRPlaces 2. Nello specifico, attraverso la conversione ontologica di dati di vario genere relativi ad eventi dislocati nel territorio, e sfruttando i principi e le tecnologie del Linked Data, si è cercato di ottenere un modello informativo quanto più possibile correlato e arricchito da dati esterni. L’obiettivo finale è stato quello di ottenere una sorgente informativa di dati interconnessi non solo tra loro ma anche con quelli presenti in sorgenti esterne, dando vita ad un percorso di collegamenti in grado di evidenziare una ricchezza informativa utilizzabile per la creazione di valore aggiunto che altrimenti non sarebbe possibile ottenere. Questo aspetto è stato realizzato attraverso un’in- terfaccia di MashUp che utilizza come sorgente il dataset creato e tutti i collegamenti con la rete del Linked Data, in grado di reperire informazioni aggiuntive multi dominio.
Resumo:
Tesi riguardante le differenze tra Semantic Web e Web Tradizionale
Resumo:
Internet of Things based systems are anticipated to gain widespread use in industrial applications. Standardization efforts, like 6L0WPAN and the Constrained Application Protocol (CoAP) have made the integration of wireless sensor nodes possible using Internet technology and web-like access to data (RESTful service access). While there are still some open issues, the interoperability problem in the lower layers can now be considered solved from an enterprise software vendors' point of view. One possible next step towards integration of real-world objects into enterprise systems and solving the corresponding interoperability problems at higher levels is to use semantic web technologies. We introduce an abstraction of real-world objects, called Semantic Physical Business Entities (SPBE), using Linked Data principles. We show that this abstraction nicely fits into enterprise systems, as SPBEs allow a business object centric view on real-world objects, instead of a pure device centric view. The interdependencies between how currently services in an enterprise system are used and how this can be done in a semantic real-world aware enterprise system are outlined, arguing for the need of semantic services and semantic knowledge repositories. We introduce a lightweight query language, which we use to perform a quantitative analysis of our approach to demonstrate its feasibility.
Resumo:
In the beginning of the 90s, ontology development was similar to an art: ontology developers did not have clear guidelines on how to build ontologies but only some design criteria to be followed. Work on principles, methods and methodologies, together with supporting technologies and languages, made ontology development become an engineering discipline, the so-called Ontology Engineering. Ontology Engineering refers to the set of activities that concern the ontology development process and the ontology life cycle, the methods and methodologies for building ontologies, and the tool suites and languages that support them. Thanks to the work done in the Ontology Engineering field, the development of ontologies within and between teams has increased and improved, as well as the possibility of reusing ontologies in other developments and in final applications. Currently, ontologies are widely used in (a) Knowledge Engineering, Artificial Intelligence and Computer Science, (b) applications related to knowledge management, natural language processing, e-commerce, intelligent information integration, information retrieval, database design and integration, bio-informatics, education, and (c) the Semantic Web, the Semantic Grid, and the Linked Data initiative. In this paper, we provide an overview of Ontology Engineering, mentioning the most outstanding and used methodologies, languages, and tools for building ontologies. In addition, we include some words on how all these elements can be used in the Linked Data initiative.
Resumo:
Recently, the Semantic Web has experienced significant advancements in standards and techniques, as well as in the amount of semantic information available online. Nevertheless, mechanisms are still needed to automatically reconcile information when it is expressed in different natural languages on the Web of Data, in order to improve the access to semantic information across language barriers. In this context several challenges arise [1], such as: (i) ontology translation/localization, (ii) cross-lingual ontology mappings, (iii) representation of multilingual lexical information, and (iv) cross-lingual access and querying of linked data. In the following we will focus on the second challenge, which is the necessity of establishing, representing and storing cross-lingual links among semantic information on the Web. In fact, in a “truly” multilingual Semantic Web, semantic data with lexical representations in one natural language would be mapped to equivalent or related information in other languages, thus making navigation across multilingual information possible for software agents.